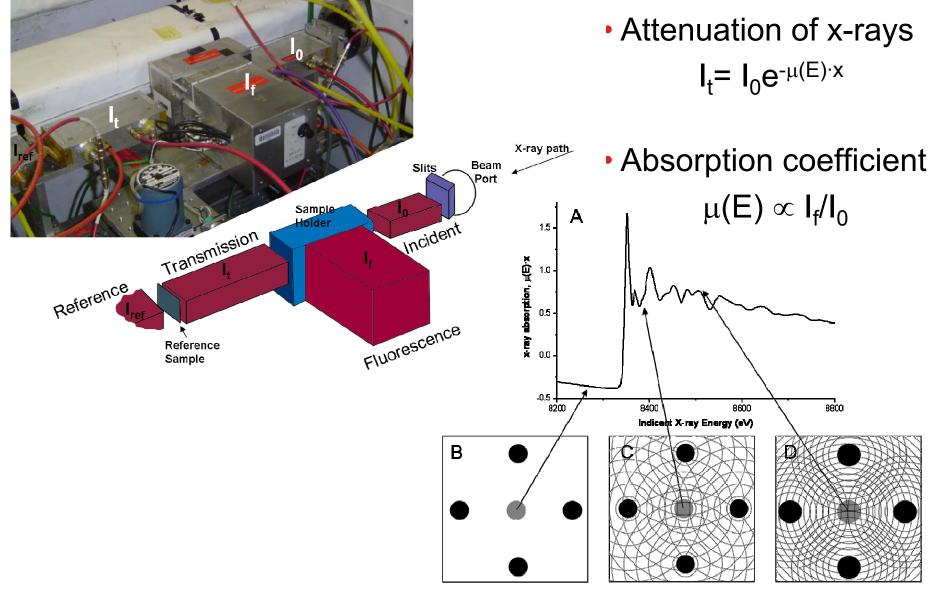
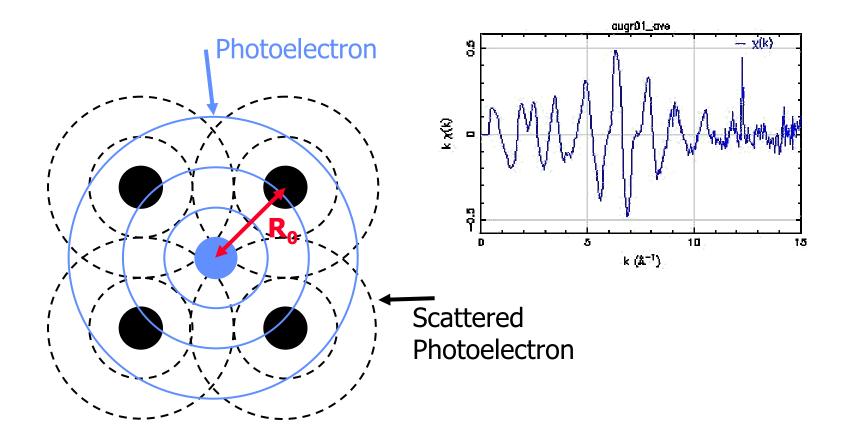
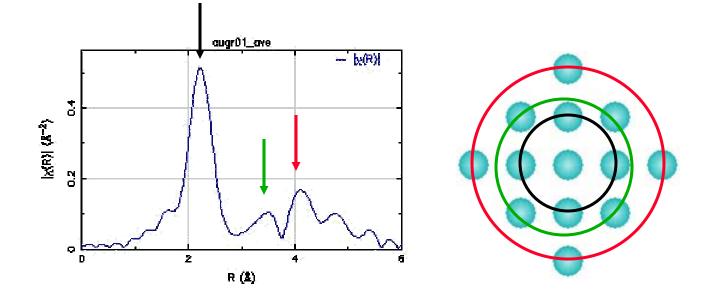
Basics of EXAFS Processing


Shelly Kelly

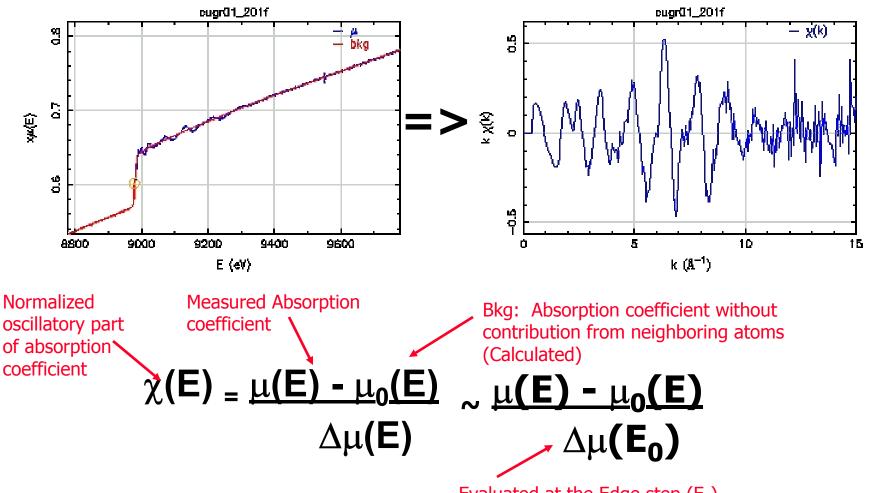
© 2009 UOP LLC. All rights reserved.


X-ray-Absorption Fine Structure


X-ray-Absorption Fine Structure

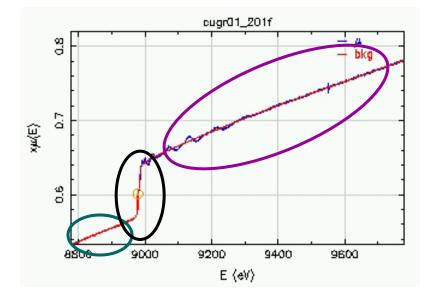
Fourier Transform of $\chi(k)$

- Similar to an atomic radial distribution function
 - Distance
 - Number
 - Type
 - Structural disorder
- Fourier transform is not a radial distribution function
 - See http://www.xafs.org/Common_Mistakes


Outline

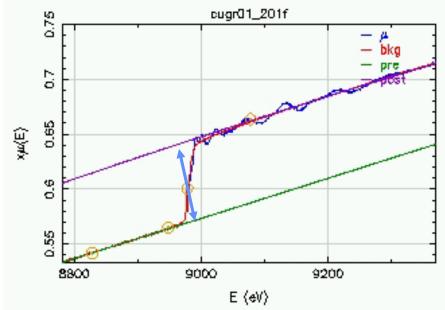
- Definition of EXAFS
 - Edge Step
 - Energy to wave number
- Fourier Transform (FT) of χ(k)
 - FT is a frequency filter
 - Different parts of a FT and backward FT
 - FT windows and sills
 - Determining Kmin and Kmax of FT
- IFEFFIT method for constructing the background function
 - FT and background (bkg) function
 - Wavelength of bkg
- EXAFS Equation

Definition of EXAFS



Evaluated at the Edge step (E_0)

Absorption coefficient



- Pre-edge region 300 to 50 eV before the edge
- Edge region the rise in the absorption coefficient
- Post-edge region 50 to 1000 eV after the edge

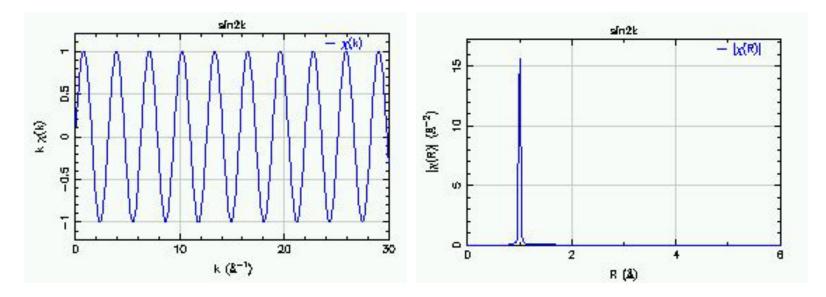
Edge step

- Pre-edge line 200 to 50 eV before the edge
- Post-edge line 100 to 1000 eV after the edge
- Edge step the change in the absorption coefficient at the edge
 - Evaluated by taking the difference of the pre-edge and post-edge lines at ${\rm E_0}$


Athena normalization parameters

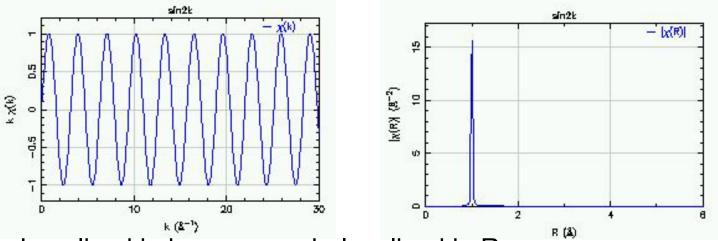
Athena Gla Edit Grave Universi Dist Mark Data Markas Analysis California University	
<u>File Edit Group Values Plot Mark Data Merge Analysis Settings H</u> elp	
Project ocuments/Current Projects/foils/raw_data/Cufoil_10ID.prj	AUI
Current group cufoil_003	🗖 cufoil_003
File: /home/skelly/Xafs/Cu/Cu-Stds-Jan02/stds.prj	🗖 cufoil_004
Z: Cu — Edge: K — Eshift: 0 Importance: 1	🗖 cufoil_005
	🗖 cufoil_merge
Background removal Show additional parameters	📕 cufoil_10k.001
E0: 8977.068 🗶 Rbkg: 🛓 🗙	📕 cu_amp1nleg6td_1k.fit
k-weight: 🔟 Edge step: 🚺 58688 🕕 📕 fix step	
Pre-edge range: -150 🗙 to -30 🗙	
Normalization range: 100 🔀 to 919.55 🗙	E k R q kq
Spline range: k: 0.5 🔀 to 16.359 🔀	EKRq
E: 0.952 🔀 to 1019.55 🔀	
Forward Fourier transform	● 0 ● 1 ● 2 ● 3 ● kw
k-range: 2 🔀 to 16.359 🗶	Plotting options
dk: 2 window type: kaiser-bessel 💻	E k R q Stack Ind PF
Phase correction: 📕 off arbitrary k-weight: 0.5	📕 mu(E) 🛛 🧉
	📕 background
Backward Fourier transform	📕 pre-edge line
R-range: 1 X to 3 X	📕 post-edge line
dr: 0.5 window type: kaiser-bessel 🛁	📕 Normalized 🛛 🕥
Plotting parameters	📕 Derivative 🛛 🗖
plot multiplier: 1 y-axis offset: 0	Emin: -500 Emax: 1000
plotting in energy from group `cufoil_003' done!	P

Energy to wave number

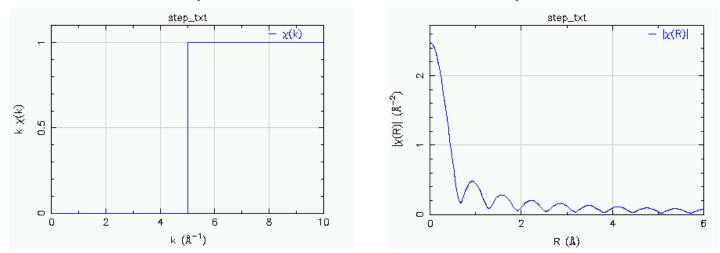

Athena edge energy E0

🔞 Athena	
Eile Edit Group Values Plot Mark Data Merge Analysis Settings Help	
Project ocuments/Current Projects/foils/raw_data/Cufoil_10ID.prj	AUI
Current group cufoil_003	🗖 cufoil_003
File: /home/skelly/Xafs/Cu/Cu-Stds-Jan02/stds.prj	🗖 cufoil_004
Z: Cu 🖃 Edge: K 🖃 E shift: 0 Importance: 1	🗖 cufoil_005
Background removal Show additional parameters	📕 cufoil_merge
E0: 8977.068 X Rbkg: 1 X	Cufoil_10k.001
k-weight. 1 Edge step: 1.58688	cu_amp1nleg6td_1k.fit
Pre-edge range: -150 X to -30 X	
Normalization range: 100 X to 919.55 X	Ek Rgkq
Spline range: k: 0.5 🗙 to 16.359 🗙	
E: 0.952 🗙 to 1019.55 🗙	
Forward Fourier transform	● 0 ● 1 ● 2 ● 3 ● kw
k-range: 2 🗙 to 16.359 🗶	Plotting options
dk: 2 window type: kaiser-bessel 🛏	E k R q Stack Ind PF
Phase correction: 📕 off arbitrary k-weight: 0.5	🗖 mu(E) 🤅
Backward Fourier transform	background
R-range: 1 X to 3 X	pre-edge line
dr: 0.5 window type: kaiser-bessel —	post-edge line Normalized
Plotting parameters	Derivative
plot multiplier: 1 y-axis offset: 0	Emin: -500 Emax: 1000
plotting in energy from group `cufoil_003' done!	

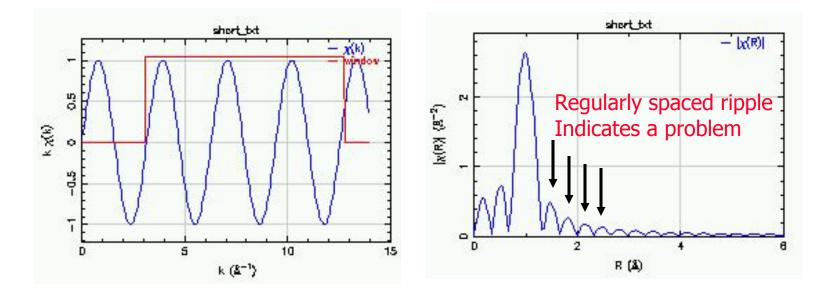
Fourier Transform is a frequency filter



- FT of Sin(2Rk) is a peak at R=1
- FT of infinite sine wave is a delta function
- Signal that is de-localized in k-space is localized in R-space
- FT is a frequency filter

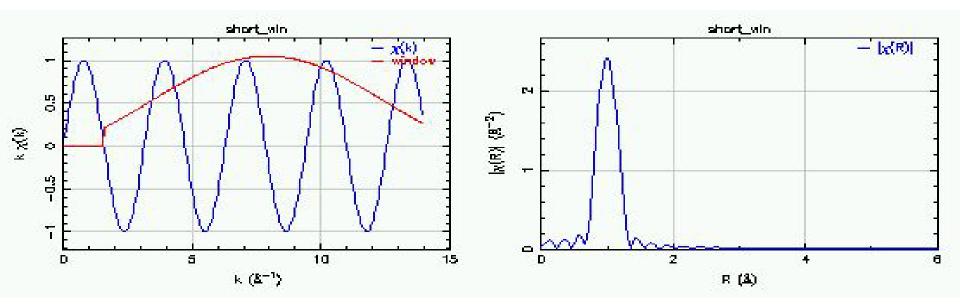

Fourier Transform of a function that is:

De-localized in k-space \Rightarrow localized in R-space



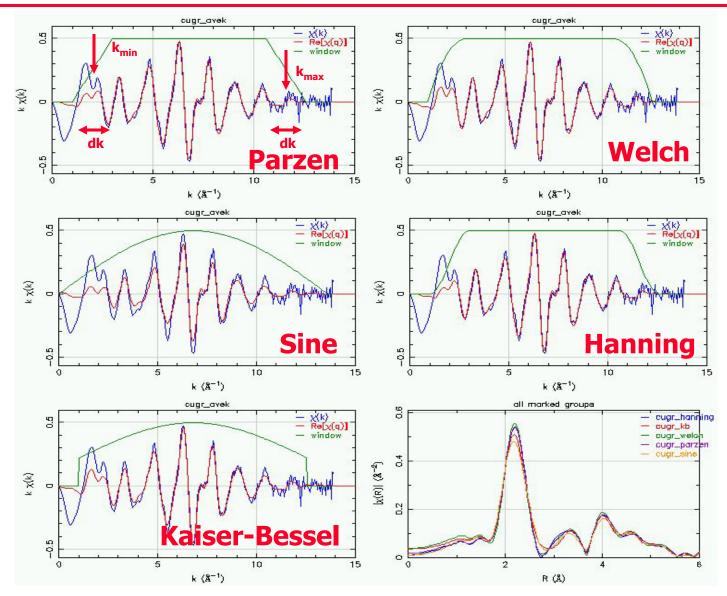
Localized in k-space \Rightarrow de-localized in R-space

Fourier Transform is a frequency filter



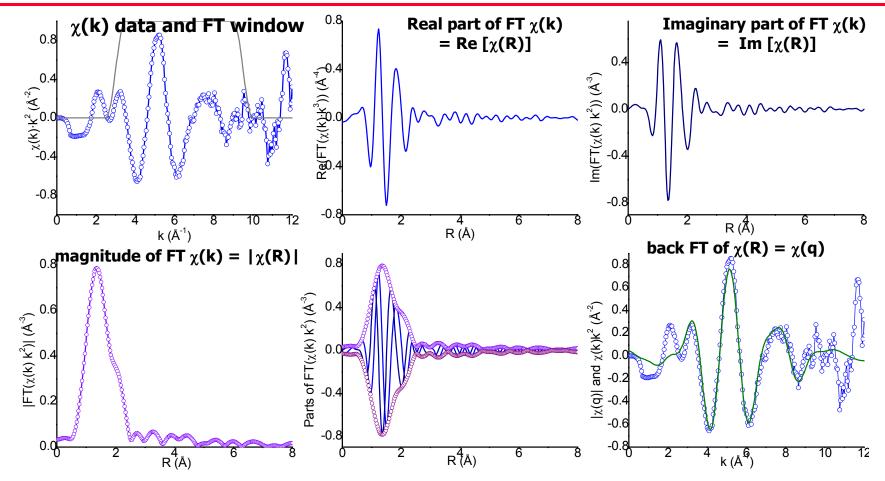
- The signal of a discrete sine wave is the sum of an infinite sine wave and a step function.
- FT of a discrete sine wave is a distorted peak.
- EXAFS data is a sum of discrete sine waves.
- Solution for finite data set is to multiply the data with a window.

Fourier Transform



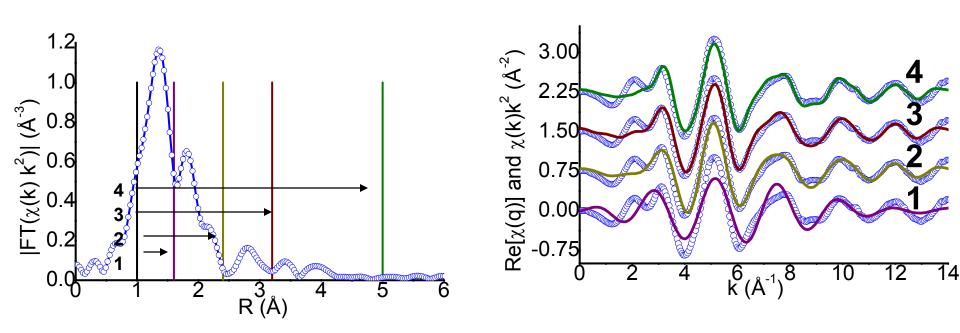
 Multiplying the discrete sine wave by a window that gradually increases the amplitude of the data smoothes the FT of the data.

Fourier Transform Windows


Athena plotting in R-space

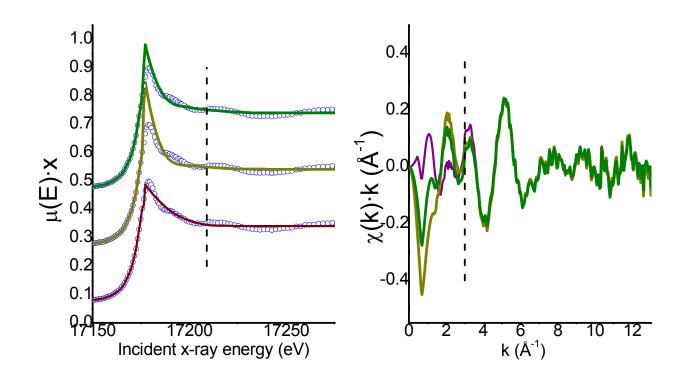
🙀 Athena	
Eile Edit Group Values Plot Mark Data Merge Analysis Settings Help	
Project ocuments/Current Projects/foils/raw_data/Cufoil_10ID.prj	AUI
Current group cufoil_003	🗖 cufoil_003
File: /home/skelly/Xafs/Cu/Cu-Stds-Jan02/stds.prj	📕 cufoil_004
Z: Cu 🖃 Edge: K 🖃 E shift: 0 Importance: 1	cufoil_005
Background removal Show additional parameters	cufoil_merge
E0: 8977.068 X Rbkg: 1 X	cufoil_10k.001
k-weight: 1 Edge step: 1.58688 1	cu_amp1nleg6td_1k.fit
Pre-edge range: -150 X to -30 X	
Normalization range: 100 X to 919.55 X	
Spline range: k: 0.5 🗙 to 16.359 🔀	E k R q kq
E: 0.952 🗙 to 1019.55 🔀	E k R q
Forward Fourier transform	● 0 ● 1 ● 2 ● 3 ● kw
k-range: 2 🗙 to 16.359 🗙	V Plotting options
dk: 2 window type: kaiser-bessel 🖵	E I R q Stack Ind PF
Phase correction: 📕 off arbitrary k-weight: 0.5	📕 mu(E) 🔹
Backward Fourier transform	background
R-range: 1 🔀 to 3 🔀	pre-edge line
dr: 0.5 window type: kaiser-bessel 🗕	 post-edge line Normalized
Plotting parameters	🗖 Derivative 🔳
plot multiplier: 1 y-axis offset: 0	Emin. 500 Emax 1000
plotting in energy from group "cufoil_003" done!	

Parts of the Fourier transform



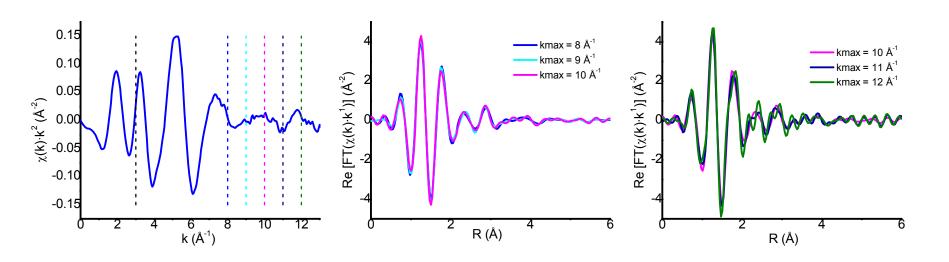
 The Magnitude of the Fourier transform does not contain as much information as the Real or Imaginary parts of the FT.

Backward Fourier transform



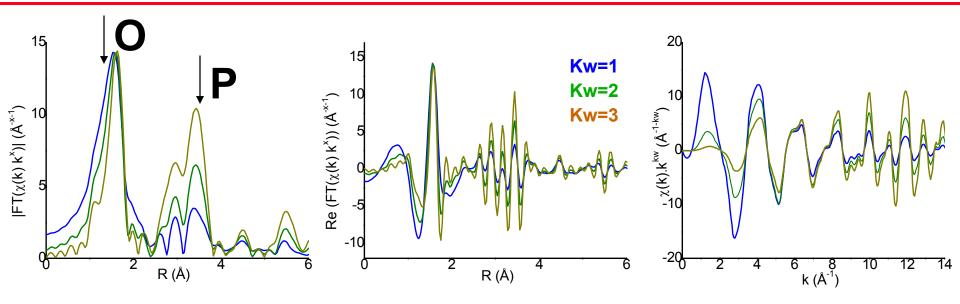
- Only the wavelengths that are contained in the back Fourier transform R range are present in the Re[chi(q)] spectra
- As a larger R range is included the back FT looks more like the original spectra (blue symbols)

How to Choose Minimum K of FT



- Choose Kmin in the region where the background doesn't change rapidly.
 - Often around 2 to 4 Å⁻¹
 - Vary E₀ and plot the resulting χ spectra with low k-weight to determine the best value.

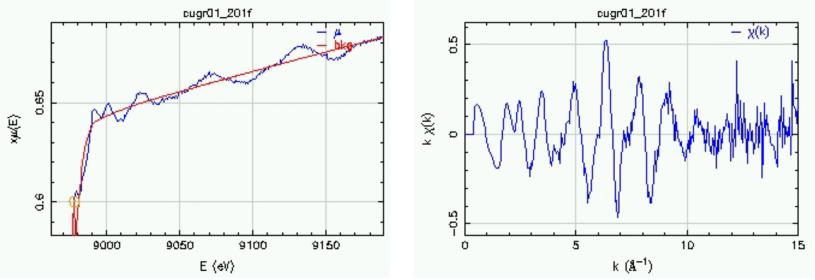
Choosing Maximum K-range



- The FT should be smooth and free of ringing
- To choose Kmax make vary the kmax value and plot the data using the largest k-weight that will be used in modeling
- Look for ringing in the real or imaginary part of FT
- In the example above kmax of 10 or 11 Å⁻¹ best

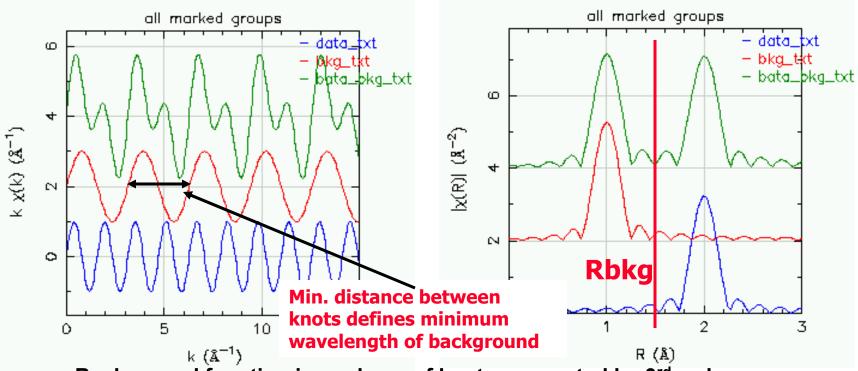
Effect of K-weight on FT

- These spectra have been k-weighted by 1, 2, and 3 and then rescaled so that the first peak in the FT are the same height
- The higher k-weight values give more importance to the data above 6 Å⁻¹, this emphasizes the signal due to the P neighbor relative to the O in the first shell


Fourier transform parameters in Athena

The Athena	
<u>Eile Edit Group Values Plot Mark Data Merge Analysis Settings Help</u>	
Project ocuments/Current Projects/foils/raw_data/Cufoil_10ID.prj	AUI
Current group cufoil_003	cufoil_003
File: /home/skelly/Xafs/Cu/Cu-Stds-Jan02/stds.prj	📕 cufoil_004
Z: Cu 🖃 Edge: K 🖃 E shift: 0 Importance: 1	📕 cufoil_005
	🗖 cufoil_merge
Background removal Show additional parameters	📕 cufoil_10k.001
E0: 8977.068 🗙 Rbkg: 1 💌	📕 cu_amp1nleg6td_1k.fit
k-weight: 1 Edge step: 1.58688 🕩 📕 fix step	
Pre-edge range: -150 🗙 to -30 🔀	
Normalization range: 100 🔀 to 919.55 🔀	Ek R q kq
Spline range: k: 0.5 🗴 to 16.359 🗴	E k R q
E: 0.952 🔀 to 1019.55 🔀	• 0 • 1 • 2 • 3 • kw
Forward Fourier transform	Plotting options
k-range: 2 🗙 to 16.359 🗙	
dk: 2 window type: kaiser-bessel 🛏	E k R q Stack Ind PF
Phase correction: off arbitrary k-weight of	🖬 mu(E) 🛛 🧖
Backward Fourier transform	🖬 background
	📕 pre-edge line
	post-edge line
0.5 window type: kaiser-bessel —	📕 Normalized 🛛 🕥
Plotting parameters	Derivative
plot multiplier: 1 y-axis offset: 0	Emin: -500 Emax: 1000
plotting in energy from group "cufoil_003" done!	

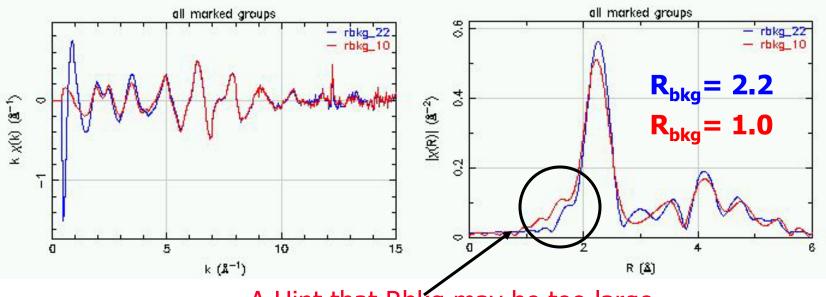
Background function overview



- A good background function removes long wavelength oscillations from $\chi(k)$.
- Constrain background so that it cannot contain oscillations that are part of the data.
- Long wavelength oscillations in $\chi(k)$ will appear as peaks in FT at low R-values
- FT is a frequency filter use it to separate the data from the background!

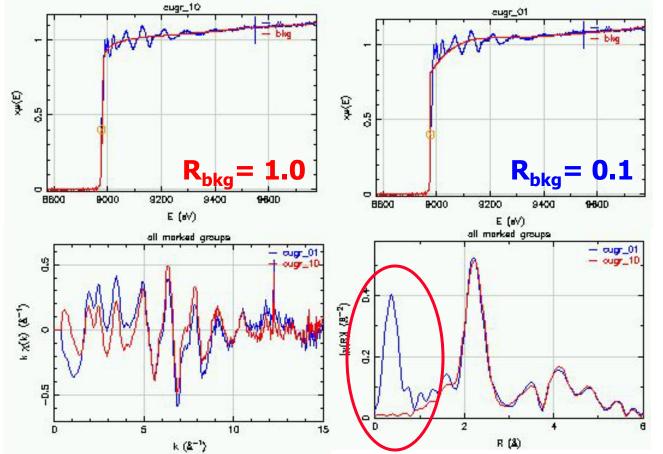
Separating the background function from the data using Fourier transform

- Background function is made up of knots connected by 3rd order splines.
- Distance between knots is limited restricting background from containing wavelengths that are part of the data.
- The number of knots are calculated from the value for Rbkg and the data range in k-space.


Rbkg value in Athena

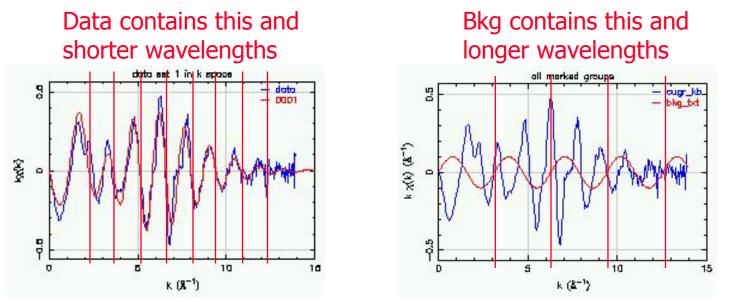
📸 Athena	
Eile Edit Group Values Plot Mark Data Merge Analysis Settings Help	
Project ocuments/Current Projects/foils/raw_data/Cufoil_10ID.prj	AUI
Current group cufoil_003	cufoil_003
File: /home/skelly/Xafs/Cu/Cu-Stds-Jan02/stds.prj	🗖 cufoil_004
Z: Cu 🛏 Edge: K 🛏 Eshift: 0 Importance: 1	📕 cufoil_005
	📕 cufoil_merge
Background removal Show additional parameters	E cufoil_10k.001
E0: 8977.068 🗙 Rbkg: 1 🔟	📕 cu_amp1nleg6td_1k.fit
k-weight: 1 Edge step: 1.50058 1 📕 fix step	
Pre-edge range: -150 🗙 to -30 🗶	
Normalization range: 100 X to 919.55 X	Ek Rq kq
Spline range: k: 0.5 🔀 to 16.359 🔀 E: 0.952 🔀 to 1019.55 😒	E k R q
Forward Fourier transform	● 0 ● 1 ● 2 ● 3 ● kw
k-range: 2 X to 16.359 X	v Plotting options
dk: 2 window type: kaiser-bessel 🖵	E K R q Stack Ind PF
	🗖 mu(E) 🛛 🤅
Phase correction: 📕 off arbitrary k-weight: 0.5	📕 background
Backward Fourier transform	📕 pre-edge line
R-range: 1 X to 3 X	📕 post-edge line
dr: 0.5 window type: kaiser-bessel —	📕 Normalized 🛛 🕥
Plotting parameters	📕 Derivative 📕
plot multiplier: 1 y-axis offset: 0	Emin: -500 Emax: 1000
plotting in energy from group "cufoil_003" done!	

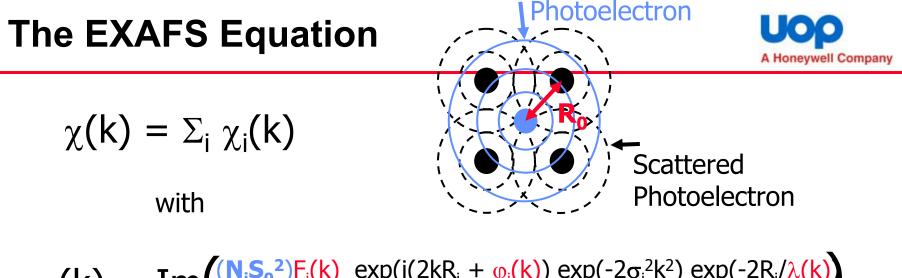
How to choose Rbkg value



A Hint that Rbkg may be too large. Data should be smooth, not pinched!

- An example where background distorts the first shell peak.
- R_{bkg} should be about half the R value for the first peak.


FT and Background function



 An example where long wavelength oscillations appear as (false) peak in the FT

- Constrain background so that it cannot contain wavelengths that are part of the data.
 - Use information theory, number of knots = 2 R_{bkg} Δk / π
 - 8 knots in bkg using R_{bkg} =1.0 and Δk = 14.0
- Background may contain only longer wavelengths.
 Therefore knots are not constrained.

$$\chi_{i}(k) = \operatorname{Im}\begin{pmatrix} (\underline{N_{i}S_{0}}^{2})\underline{F_{i}(k)} & \exp(i(2kR_{i} + \varphi_{i}(k)) \exp(-2\sigma_{i}^{2}k^{2}) \exp(-2R_{i}/\lambda(k)) \\ R_{i} = R_{0} + \Delta R \\ k^{2} = 2 m_{e}(E-E_{0})/\hbar \end{pmatrix}$$

Theoretically calculated values

 $F_i(k)$ effective scattering amplitude $\phi_i(k)$ effective scattering phase shift $\lambda(k)$ mean free path Starting values

R₀ initial path length

Parameters often determined from a fit to data

- N_i degeneracy of path
- S_0^2 passive electron reduction factor
- σ_i² mean squared displacement of half-path length
- E₀ energy shift
- $\Delta \mathbf{R}$ change in half-path length

- www.xafs.org
- Kelly, S D, Hesterberg, D and Ravel, B. Analysis of soils and minerals using X-ray absorption spectroscopy. In *Methods of soil analysis, Part 5 -Mineralogical methods*; Ulery, A. L., Drees, L. R., Eds.; Soil Science Society of America: Madison, WI, USA, 2008; pp 367.