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• The Bond Valence Model

• Bond Valence Sums as a check of EXAFS results

• Can Bond Valence Sums be used in EXAFS Fits?

• Restraints v. Constraints in EXAFS Analysis

• a priori knowledge

Are there simple rules of chemical bonding that

can complement or even assist EXAFS analysis?



Bond Distances and Formal Valence

For inorganic solid-state chemistry:
• there are nearly universal ionic sizes.

• Bond lengths between atoms are correlated
with formal valences of the species.

Pauling’s “2nd Rule” of electrostatic valence (Pauling, 1929) gives a

common sense view of charge balance at the atomic scale:

The total strength of the valency bonds which reach an ion

from all neighboring atoms is equal to the charge of the ion.

This works well for ionic and covalent bonds, and considers only the

near neighbors .

How can we use this information in EXAFS analysis?
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The Bond Valence Model

Following the description of I. D. Brown and D. Altermatt:

1. For inorganic structures, “bond” means all neighboring cation-
anion distances (a local structural view).

2. The oxidation state of a cation i can be written as

Vi =
∑
j

sij

where the sum is over neighboring atoms j, with each bond
between atoms i and j having bond valence sij .

3. This bond valence is most commonly parameterized as

sij = exp[(R′ij −Rij)/b]

where Rij is the bond distance between atoms i and j and

4. R′ij and b are parameters to be determined empirically.
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The Bond Valence Model

Brown and Altermatt considered other functional forms, such as

sij = (Rij/R
′
ij)

N

but preferred the exponential form, because there seemed to be a

universal value for the empirical parameter b:

b = 0.37 Å

Which makes a One-Parameter Model relating Formal Valence V ,

coordination number N , and bond distance R:

Vi =

N∑
j=1

exp[(R′ij −Rij)/0.37]

D. Altermatt and I. D. Brown, Acta Cryst. B41, pp.240-244 (1985).
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Bond Valence Parameters

Altermatt and Brown (1985) analyzed ∼15000 cation environments

from the Inorganic Crystal Structure Database, and determined

reliable bond valence parameters R′ for ∼150 bonds, mostly metal-

oxygen, and metal-sulfur.

Some Typical Bond Valence Parameters R′ (in Å) for metal-oxides
from Altermatt and Brown:

Bond R′ (Å) Bond R′ (Å)

Cu(I)-O 1.593 Cu(II)-O 1.679

Fe(II)-O 1.734 Fe(III)-O 1.759

Mn(II)-O 1.790 Mn(III)-O 1.760

Mn(IV)-O 1.753

Brese and O’Keefe (1991) and others have tabulated additional bond

valence parameters for more anions (F, Cl, Br, Se, H . . . ).

N. .E. Brese and M. O’Keefe Acta Cryst. B47, pp.192–197 (1991).



Bond Valence Examples: Does it work?

Vsum =

N∑
j=1

exp[(R′ij −Rij)/0.37]

Mineral/Site Oxygen Coordination V sum Vformal

Cu2O (cuprite)

Cu(I) 2 @ 1.849Å 1.002 1

CuO (tenorite)

Cu(II) 2 @ 1.951Å, 2 @ 1.961Å, 2 @ 2.784Å. 1.993 2

FeO (ferrous oxide)

Fe(II) 6 @ 2.1387Å 2.010 2

Fe2O3 (hematite)

Fe(III) 3 @ 1.946Å, 3 @ 2.226Å. 2.955 3

CuFeO2 (cuprous ferrite)

Cu(I) 2 @ 1.898Å 0.877 1

Fe(III) 6 @ 1.982Å 3.284 3



Bond Valence: Mn-oxides

Mineral/Site Oxygen Coordination V sum Vformal

MnO (manganese oxide)

Mn(II) 6 @ 2.222Å 1.876 2

MnO2 (pyrolusite)

Mn(IV) 2 @ 1.878Å, 4 @ 1.891Å 4.181 4

Mn2O3 (cubic bixbyite)

Mn(III) 6 @ 1.993Å 3.196 3

Mn(III) 2 @ 1.899Å, 2 @ 1.985Å, 2 @ 2.248Å 2.997 3

Mn3O4 (hausmannite) [tetragonal]

Mn(II) 4 @ 2.044Å 2.013 2

Mn(III) 4 @ 1.932Å, 2 @ 2.283Å 3.000 3

Mn3O4 (makorite) high-pressure phase [orthorhombic]

Mn(II) 8 between 2.12 Å and 2.60 Å 1.997 2

Mn(III) 6 between 1.91 Å and 2.32 Å 3.007 3
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Bond Valence Sums: Two Final Interesting Cases

Mineral/Site Oxygen Coordination V sum Vformal

Mn3O4 (hausmannite): Wyckoff’s description

Mn(II) 4 @ 1.858Å 3.327 2

Mn(III) 4 @ 2.033Å, 2 @ 2.355Å 2.313 3

Mn3O4 (hausmannite): Baron, et al. , Am. Min. 83 (1998)

Mn(II) 4 @ 2.044Å 2.013 2

Mn(III) 4 @ 1.932Å, 2 @ 2.283Å 3.000 3

Fe3O4 (magnetite)

Fe(III) 4 O at 1.886Å 3.196 3

Fe(II,III) 6 O at 2.060Å (2.49,2.66) (2,3)

Part of Brown and Altermatt’s motivation was to use bond valence

sums and local coordination to assess the crystallographic literature.

Conclusion #1:

The Bond Valence Model works remarkably well at relating

Formal Valence, Coordination Number, and Bond Length.



Using Bond Valence Sums in EXAFS Analysis

Several groups (G. E. Brown, et al. ) have used Bond Valence Sums as

an a posteriori check on results of EXAFS analysis:

1. Do EXAFS Analysis.

2. Do Bond Valence Sum on Resulting Local Structure.

3. Check for “Reasonableness”.

This has proven successful and useful for several real experimental

systems (Pb-O, Ti glasses, . . . )

Conclusion #2:

Bond Valence Sums provide a simple, independent check

on the Formal Valence, Coordination Number, and Bond

Lengths determined from EXAFS analysis.
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Bond Valence Sums as a Fitting Constraint

Can we use the connection between R, N , and V in the fit itself?

If we assume we know the Valence State (say from the XANES), we
can constraint N and average bond-length 〈R〉:

〈R〉 = R′ + 0.37 log(N/V )

guess e0 = 1.0 # e0 shift

guess sig2 = 0.02 # sigma2

set S02 = 0.7 # Amp factor

guess N = 6.0 # Coord. Number

set bv = 1.79 # B.V. for Mn(II)

set V = 2.0 # Formal Valence

R = bv + 0.37*(log(N/V))

path(index = 1, degen = 1,

label = ’Mn-O for MnO’,

feff = feff0001.dat,

delr = (R - reff) ,

amp = S02 * N,

e0 = e0, sigma2 = sig2 )

Configuration file constraining

N and R to the Bond Valence R′

and Formal Valence V for a fit of

the 1st shell of MnO.

E0 , σ2 , and N are varied.

S2
0 , V and R′ are fixed.

Fits were done in R-space, using

FEFF calculation for Mn-O, with k-

weight = 2.0 and fit ranges:

k = [2.50, 10.50] Å−1

R =[1.15, 2.20] Å



Constraining N and R for MnO

For MnO, with only one site and one Mn-O distance, the simple constraint works well:

Mn-O EXAFS k2χ(k) and 1st shell fit with Bond-

Valence Constraint. Data (From Lytle) and Fit .

|χ(R)| and Re[χ(R)] for 1st shell fit with

Bond-Valence Constraint. Data and Fit .

Fit Variable Best-Fit Value

N 6.45 (0.7)

E0 1.1 (2.1)

σ2 0.015 (0.004)

R 2.22 [0.02]

R-factor = 0.045, χ2 = 29.8,

2∆k∆R/π = 5.12.

We get values very close to crystal-

lography: N = 6, R = 2.22Å.

Using Bond Valence Sum to con-

strain N , R, and V works well for

one coordination shell .

Will it work for a shell with more than

one distance?



Bond Valence Constraints for Mn 2O3 and Mn 3O4?

Mn2O3 has 2 sites and 4 Mn-O distances between 1.90 and 2.25 Å, so

an average like 〈R〉

〈R〉 = R′ + 0.37 log(N/V )

may not work. We’re near the limit of available data ( ≈ 2∆k∆R/π)

to see all those distances well enough for the B.V. sum to be accurate.

For Mn 3O4, with 2 sites, a wider range of distances, and 2 valence

states , the situation is hopeless.

If the Bond Valence sum is only good to 10%, do we

really want to impose it as a constraint?

Conclusion #3:

Bond Valence Sums can be used to constraint R, and N , and

V in EXAFS analysis for some cases, but not all cases.



Fitting Restraints

We’d like the valence for Mn 2O3 to be close to 3, but don’t want to

force it to be exactly 3. That is, we want a statistical preference not a

exact mathematical constraint for a Bond Valence value.

Consider a Gaussian distribution for “Valence”:

We could choose the ideal valence

(centroid), the “ uncertainty ” in that

valence (FWHM), and the relative im-

portance of this term (Height) com-

pared to our EXAFS data.

We’d do the bond valence sum based

on our EXAFS data, and try to per-

suade it toward the expected Valence

without forcing it.

A typical Gaussian “expected distribution” for

Bond Valence Sum of a coordination shell.

This is called a fitting restraint .



Fitting Restraints vs. Fitting Constraints

While a constraint is an exact mathematical relationship between vari-

ables in the fitting model, a restraint is a statistical preference for a

value or set of values.

Restraints have been used in other fields (say, x-ray diffraction anal-

ysis with SHELX), and have been discussed for EXAFS analysis by

Binsted, et al. for EXCURVE98.

The idea is similar to the classic approach of

“Fit, Calculate the Bond Valence, Check Result”

but we’ll put the sum and “check” right into the fit, and steer the Va-

lence toward a preferred value statistically.

When refining local structures from XAFS data, it may be

useful to give some statistical preference to the expected

Bond Valence Sum around the central atom.

N. Binsted, R. W. Strange and S. S. Hasnain Biochemistry 31, p 12117, (1992)



How to Impose a Restraint:

A “normal” fit minimizes a χ2 statistic by adjusting variables ~x:

χ2 ∼
N∑
i

[
χ̃data
i − χ̃model

i (~x)

εi

]2

A restraint is just another term, λ, added to the function to minimize:

χ2 ∼
N∑
i

[
χ̃data
i − χ̃model

i (~x)

εi

]2

+λ(~x,~b)

λ depends on the fit variables ~x (set of R, N , and E0) and on

parameters ~b (our Gaussian centroid and FWHM!). Consider

λ(~x) =
[
(V (~x)− V0)/δV

]2
where V0 is the “Expected Formal Valence”, and δV measures our

confidence in that V0 relative to our confidence in our data.



Fitting Restraints:

With restraint λ(~x) = ([V (~x)− V0]/δV )2, our χ2 becomes

χ2 ∼
N∑
i

[
χ̃data
i − χ̃model

i (~x)

εi

]2

+

[
V (~x)− V0

δV

]2

The restraint adds another “data point” to our fit, with “data” V (~x)

and “model” V0, and uncertainty δV .

δV → 0 Force V (~x) = V0 constraint

δV →∞ V (~x) determined by our data alone no prior knowledge

Finite δV V (~x) influenced by our data and V0 restraint!

δV lets us “ numerically tune ” our belief in the Bond Valence Sum.

A restraint gives a Gaussian distribution for V around V0,

and allows us to quantify our prior knowledge of our system.



Bond Valence Restraint for MnO

Recall that ideally for MnO, N = 6, R = 2.222Å. Varying N , R, E0 , and σ2 , and

changing the Restraint Weight δV for the Bond Valence Sum shows:

δV 0.01 0.1 1.0 10.0 100.0

Constrained → Free

R (Å) 2.223(.05) 2.223(.04) 2.226(.04) 2.229(.03) 2.229(.03)

N 6.4(0.8) 6.4(0.8) 5.6(1.0) 4.7(1.4) 4.7(1.5)

Vsum 1.999 1.983 1.718 1.437 1.439

E0 1.2(2.6) 1.2(2.8) 0.6(3.3) 0.1(3.1) 0.1(3.2)

σ2 (Å2) 0.0158(4) 0.0157(4) 0.0131(4) 0.0100(5) 0.0102(6)

R 0.035 0.035 0.025 0.021 0.021

χ2 21.4 21.1 16.4 12.7 12.7

Correlations

C(N,R) 1.00 0.97 0.28 -0.02 -0.02

C(N, σ2) 0.57 0.56 0.80 0.89 0.90

C(R,E0) 0.92 0.92 0.90 0.90 0.90

S2
0 = 0.70



Bond Valence Restraint for Mn 2O3

Returning to Mn 2O3 with two Mn(III)-O octahedra and 3 different Mn-O distances

• one regular (6 O @ 1.993 Å).

• one distorted (2 O @ 1.985 Å, 2 O @ 1.899Å, and 2 O @ 2.248Å).

and data (from Lytle) limited to 12 Å−1 (2∆k∆R/π ≈ 7), we ask:

Can the Bond Valence Sum help us see the splitting in the Mn-O shell?

We assert the following “prior information” on our data:

• The Valence for both sites should be close to +3.

• one Mn site has 6 O at one distance

• the other Mn site has 2 bonds that are the same length as the regular octahedron, 2
“short” O bonds, and 2 “long” O bonds.

We’ll vary 3 distances, N ,E0 and σ2 , and set S2
0 to 0.7 as before (6 variables).

We’ll restrain both sites to have a Bond Valence Sum near 3:

λ1 =

[
(V (R1)− V0)/δV

]2

λ2 =

[
(V (R1, R2, R3)− V0)/δV

]2



Bond Valence Restraint for Mn 2O3

Mn2O3 k
2χ(k) Data (From Lytle) and Fit

with Bond-Valence Restraint.
Mn2O3 χ(R) and Re[χ(R)] for Data and

Fit with Bond Valence Restraint.

Using δV = 1:

Parameter Value

C(N,R1) 0.2

V1 (regular) 3.40

V2 (distorted) 3.00

R 0.007

χ2 91.8

2∆k∆R/π 7.2

Fit Variable Best-Fit Value Predicted

N 5.86 (0.7) 6

E0 1.2 (1.9)

σ2 0.005 (0.004)

R1 (8x) 1.96 (0.02) 1.99

R2 (2x) 1.85 (0.09) 1.90

R3 (2x) 2.28 (0.05) 2.25



Conclusions

• The Bond Valence Model is a simple, powerful way to check the

results of XAFS analysis – especially the connection between R,

N , and formal valence.

• Bond Valence Sums may be appropriate for hard constraints in

some EXAFS analysis, but this is not universal.

• Use of Bond Valence as a priori knowledge of bonding environ-

ment and as a fitting restraint may be appropriate in a much wider

range of systems.

• Could there be other a priori knowledge to use as a fitting

restraints for your system?


