2π Shift and Ligand-Swapping EXAFS Modeling Tricks in Applications to Catalysis and Biology

Alain MICHALOWICZ

Groupe de Physique des Milieux Denses Université Paris XII, Créteil

With the very efficient collaboration of Gilberto Vlaic and Emiliano Fonda

Dipartimento di Scienze Chimiche, Universita` degli Studi di Trieste, and XAFS group - ELETTRA, Sincrotrone Trieste SCpA

Also with **Frédéric Champloy** and Christoph Kratky (University of Graz, Austria, and Créteil, France)

And very useful discussions with Dale Sayers, Edward Stern and James Penner-Hahn, during the IXS S&C meetings.

2π Shift and Ligand-Swapping EXAFS Modeling Tricks in Applications to Catalysis and Biology

The reputation of EXAFS as a quantitative local structural probe is generally well established.

Error bars of \approx 0.01-0.02 Å for the first absorber-neighbors distance assumed or estimated.

But

Some chemically *strange* unexplained results are still published, even recently.

 Very long metal-oxygen bond in metallic clusters in interaction with oxide surfaces.
 Very long metal-nitrogen bonds in metallo-enzymes.

The facts :

Since 1988, several publications* in the frame of Catalysis works claim the existence of a very long M-O distance corresponding to the metallic cluster interaction with the oxide surface of the support.

R ≥ 2.50 Å instead of R ≤ 2.20 Å

* Martens et. al. 1988, Vaarkamp et. al. 1993, Miller et. al., 1993, Traiantafillou & Gates 1994, Purnel et. al. 1994, Kawi et. al. 1994, Koenigsberger & Vaarkamp 1995, Munoz-Paez & Koenigsberger 1995, Zhao &Gates 1996

Since it was the subject of controversial discussions between EXAFS specialists and chemists, it is important to understand if this long M-O distance is real or due to an artefact in the EXAFS data analysis.

In the later case, is EXAFS definitely wrong, or is the artefact easy to understand and overcome ?

The 2π Shift Trick in **Applications to Catalysis** When a long M-O distance was found, the corresponding Eo shift (when published) was systematically very important : ≤ -20 eV

In some cases the two distances (and Eo) were found in the same spectrum

R ≤ 2.20 Å, ∆Eo ≥ 0.0eV R ≥ 2.50Å, ∆Eo ≤ -20eV

FEFF Simulation of a theoretical RhO_x model compound with 2 O at R = 2.20 Å Eo = 0 eV 6 Rh at R = 2.70 Å Eo = 0 eV

Fit of the same FEFF Simulation with 3.5 O at R = 2.52 Å Eo = -23 eV 6 Rh at R = 2.70 Å Eo = 0 eV

Surface plot of $\Delta \chi^2$ (R, ΔEo)

R = 2.20 Å, △Eo = 0.0eV R' = 2.53Å, △E'o ≤ -23eV phase diference 2k'R' - 2kR ≈ 2π For k = 2.5 -> 8 Å⁻¹

2π Shift Trick

The 2π Shift Trick in Applications to Catalysis Same result for a real experimental case RhCl₃/MgO reduced sample

The 2π Shift Trick A real experimental case

Fit with a short Rh-O distance $R_s = 2.07 \text{ Å} \Delta E_{os} = 3.7 \text{ eV}$

Fit with a long Rh-O distance $R_1 = 2.44 \text{ Å } \Delta E_{ol} = -18.3 \text{ eV}$

Some ideas to avoid the 2π shift trick

Alain MICHALOWICZ, Gilberto VLAIC

- J. Synchr. Rad., (1998), 5, 1317-1320
- Is $\triangle Eo < -20$ eV (with Eo = inflexion point) physically reasonable ? Is there any known model compound with such a $\triangle Eo$?
- If a chemically « special » long distances with very big negative ΔEo if found, look for other solutions.

EXAFS results, and especially strange ones, should be reproduced on experimental model compounds for validation.

Example : B₁₂ enzymes

- B_{12} -based enzymes are the only ones known cofactors containing a metal carbon-bond.
- Known B_{12} cofactors are alkylcobalamins (RCbl) consisting of a cobalt corrinoid with a pendant nucleotide coordinated to Co. The sixth ligand is CN (vitamin B_{12} itself) or a R group.

Vitmaine B12 = Cobalamine

Example of Model compounds : pyridine based cobaloximes

• Most important structural parameters are Co-N(base) and Co-L(axial) distances

• A series of EXAFS studies on cobalamins and model compounds have been published in the last ten years.

• It has been found that many of the results were erroneous. I.e. Co-R or Co-L distances differed for more than 0.15Å from known crystal structure values.

I. Sagi and M. R. Chance (1992) *J. Am. Chem. Soc.*, **114**, 8061-8066

Co-N in 5,6-DMB nonalkyl cobalamines

✤ correct (R=Methyl, R=adenosyl);

* erroneous (R=CN,H₂O);

In R=CN R= H_2O , the Co-N(DMB) EXAFS distance is respectively 0.15Å and 0.22Å longer than XRD values

C. Kratky et al. (1995) J. Am Chem. Soc., 117, 4654-46670

F. Champloy et al. (1999) J. Am. Chem. Soc., 121, 11780-11789

+ W. Meyer-Krautke, EMBL Outstation, Hamburg, Germany

M. Giorgetti, M. Berrettoni, P. Conti, A. Di Cicco, R. Marassi, and I. Ascone (1996) *Organometallics*, **15**, 3491

 $[LCo(DO)(DOH)_{pn}R]ClO_4$ where L=H₂O R = isopropyl, isobutyl, benzyl, methyl

Co-L distance is in perfect agreement with XRD

R= methyl acetate, 2,2,2-tri-fluoro-ethyl

Co-L distance differs more than 0.15Å from the value found in a successive XRD study.

L. Randaccio and S. Geremia (1997) *Organometallics* **16**, 4951

A complete work by Emiliano Fonda Constrained EXAFS (FEFF) fit with Δχ² mapping

Co(DH)₂(Py)Cl

Co(DH)₂(Py)(CH₂Ph)

 $Co(DH)_2(Py)N_3$

Co(DH)₂(Py)Me

Co(DH) 2(Py)(adamantyl)

R-pyridine-cobaloximes.

single and multiple scattering in the equatorial and the axial ligands

R=N₃

R=adam

• $\Delta \chi^2$ is calculated with FEFF, for each geometry.

•We map $\Delta \chi^2$ as a function of Co-N and Co-R distances

•Constrained mapping : axial and equatorial ligands geometries are fixed. The only changes are the Co-N and Co-R distances.

•Free refinement : Other parameters (distances, DW,...) are optimized for each (Co-N, Co-R) point with FEFFIT in a given range in **R space**.

Free parameters Fit

Constrained fit

a)

b)

Free

parameters For the whole Structure Swapping of the two axial ligands

Constrained map, but only in the range 0-3 Å

Constrained map with multiple Scattering, up to 4 Å

A very short Co-N axial distance Appears : ♀ Swapping with the

Swapping with the Equatorial Co-N distance

There is also a very long Co-N Distance solution :

Swapping with the Equatorial second neighbors Co-C

8 5 8

An example of ligand swapping trick in biological samples

Co-N(DMB) = 2.18 Å (free MetCbl) ≥ 2.55 Å for H₂OCbl Complexed with several enzymes

Crystallography and EXAFS (Chance)

Methyl Cobalamine complex with Glutamate mutase F. Champloy, C. Kratky

The residual is calculated for the whole structure, up to 4 Å, including the multiple scattering

Free Methyl cobalamine

The secondary long distance minimum occurs even for the free model compound, in the solid state, where the accual distance (2.18 Å) is undoubltly known. The true minimum do not vary with the fitting weight.

The long distance minimum is unstable, sensitive to the fitting weight k^n , and close to the Co-C (2nd neighbors) distance (2.95 Å)

Fitting the amplitude parameters (Debye-Wallers, N) can lead to a dangerous minimization of the FALSE solution.

Free and enzymz-bound B12 have the same EXAFS spectrum (except the noise) : assuming different structures is UNJUSTIFIED

We have identified two specific EXAFS data modeling tricks :

a) « 2π shift » of the theoretical curve b) « ligand swapping »

These two tricks are certainly more dangerous with poor resolution and poor signal/noise spectra, but their nature is resolution & noise -independant : they can occur even for a theoretical simulation or a good experimental spectrum.

Other tricks are also discussed during this workshop

Chance 's group was unlucky : The cobalamine-enzyme complex crystal structure they used as reference (aquocobalamine) was false. Why ???

Radiation dammage
sensitivity toUV-VisX-raysMethyl-cobalamineyesnoAquo-cobalaminenoyes

X-Ray dammage : photoreduction The crystal was a Co(III)-Co(II) mixture)

Champloy et. al., JSR, 2001

 2π shift and ligand swapping tricks Common features :

1) Both are not directly due to the data quality. They can occur even for a perfect noisde-free spectrum

2) Both lead to multiple fitting solutions. Nead to explore the $\Delta \chi^2$ vs fitting parameters map. The first solution you fond is not necessary the good (or the bad) one !

3) Both tricks are not due to buggyprograms : FEFF(FIT), GNXAS,EXCURVE, even my own program...,All ,can lead to these traps.

 2π shift and ligand swapping traps : Differences.

1) 2π shift should be obvious to avoid. Long M-L distances associated with large negative Δ Eo should be suspect Try another solution and restrain the fit to « reasonable » Δ Eo

In case of doubt, use model compounds

2) Ligand swapping is less obvious
Long M-L distances can be due to the
2nd M-C distance => chemically
irrelevant

 2π shift and ligand swapping traps : Differences.

Swapping between axial ligands can lead to false but acceptable distances $\Delta \chi^2$ constrained mapping can help. Fit in R space is preferable. Look at the 3-4 Å region.