Data Processing with IFEFFIT, ATHENA, & ARTEMIS

Matthew Newville

Consortium for Advanced Radiation Sources University of Chicago

July 24, 2007

Matthew Newville (CARS, Univ Chicago) IFEFFIT — ATHENA — ARTEMIS — SIXPACK

Acknowledgments

ATHENA, ARTEMIS, and SIXPACK are GUI built on top of the IFEFFIT library:

- Data Management and Visualization
- XAFS Data Processing: background subtraction, Fourier Transforms.
- Simple XANES analysis: linear combination.
- Run FEFF for *ab initio* XAFS calculations.
- Fit XAFS data to calculations, build physical models.

The FEFF and IFEFFIT suite of XAFS Analysis Programs

FEFF6 ab initio EXAFS calculations (J. J. Rehr, et al., 1990 – 1998)

- state-of-the-art photo-electron scattering physics.
- no built-in analysis used by many analysis programs.
- IFEFFIT Interactive (command-line) XAFS Analysis, building on earlier codes: AUTOBK and FEFFIT (MN, 2000).
- ATHENA GUI for XAFS Data Processing, using IFEFFIT (Ravel, 2001).
- ARTEMIS GUI for XAFS Fitting, using FEFF and IFEFFIT (Ravel, 2002).
- HEPHAESTUS GUI for XAFS information (edge energies, etc) (Ravel, 2004).
 - SIXPACK GUI for XAFS Analysis, using FEFF and IFEFFIT (Webb, 2003).

Not Included in the IFEFFIT Package:

FEFF8 necessary for *ab initio* XANES calculation. Helpful for some EXAFS Analysis (J. J. Rehr, *et al.*, 1998 – present) Requires a license from U. Washington [~US\$400].

HEPHAESTUS: Periodic Table of X-ray Properties

0	Hephaestus																		
Eile	<u>S</u> ettings																		Help
Periodic Table of Absorption							n Data	ı											
	Formulas	H																	He
	Data	Na	Mg											AI	Si	P	s	CI	Ar
	lon Chamber	K Rb	Ca Sr	Sc V	Ti Zr	V Nb	Cr Me	Mn Tc	Fe Ru	Co Rh	Ni Pd	Cu Ag	Zn Cd	Ga In	Ge Sn	As Sb	Se Te	Br 1	Kr Xe
K.	Transitions	Ca	Ba	La	Hſ	Ta	w	Re	03	٣	Pt	Au	Hg	TI	РЬ	Bi	Po	At	Rn
C	Ldge Finder	Fr	Ra Lanth	Ac anides	Rf Ce	Ha Pr	Sg Nd	Bh Pm	Hs Sm	Mt Eu	Gd	ть	Dy	Ho	Er	Tm	٧b	Lu	
	Line Finder		Ac	tinides	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cſ	Es	Fm	Md	No	Lr	
		Na	Name Copper				-	E	lges	n i n) F a	I PA		Lines		ata			
Y.		w	Weight 63.			63.5	63.54 amu			M		0 F	1		La		Ly	en	
	Density			8.94 g/cm^3				0000											
		Energy			10000 eV			K 8979 L1 1096.7			ĸ	Kalpha2 (K-L2) 8026.7 (0.2943)				3)			
	Thickness Absorption Length			10 µm			L2 952.3			K	Kalpha3 (K-L1) 7882.3 (0.0003)				3)				
			th	5.10	8 µm			L3	932.7										
		Tr	ansmitt	ed Fra	tion	0.	145												_

Edge Energies, Fluorescence Line Energies, Absorption calculations

SIXPACK: Sam's XAS Programs

Well-supported GUIs, used heavily in Northern CA!

- Reading / Viewing Data from Many beamlines
- Linear Combinations and Principle Component Analysis (for XANES)
- EXAFS Fitting with simple FEFF models.

Data Processing with ATHENA / IFEFFIT

ATHENA provides a GUI for processing beamline data to $\chi(k)$.

- Read in beamline data, merge data sets.
- Deglitch, Align Spectra, Shift energies.
- Pre-edge subtraction, Find E₀, Normalize Spectra
- Background subtraction to $\chi(k)$.
- Fourier Transforms $\chi(k) \rightarrow \chi(R)$.
- Simple Data Plotting.
- Save/Read "Projects" of Analysis.

Other features, including:

- Correct for self absorption of fluorescence data.
- Linear combination fits, peak shape fitting for XANES / EXAFS.

ATHENA User's Guide

Bruce Ravel bravel@anl.gov http://cars9.uchicago.edu/~ravel/software/exafs/

You may find this helpful.

Document version 1.2 for ATHENA version 0.8.53 June 24, 2007

Data Processing with ATHENA / IFEFFIT

Steps for reducing measured data to $\mu(E)$ and then to $\chi(k)$:

• convert measured intensities to
$$\mu(E)$$
.

- subtract a smooth pre-edge function, removing instrumental background and absorption from other edges.
- **(a)** normalize $\mu(E)$ to go from 0 to 1. Analyze normalized $\mu(E)$ as XANES.
- I remove a smooth post-edge background function to approximate μ₀(E) to isolate the XAFS χ(k).
- identify the threshold energy E_0 , and convert from E to k space: $k = \sqrt{\frac{2m(E-E_0)}{\hbar^2}}$
- weight the XAFS $\chi(k)$ and Fourier transform from k to R space.

After we get this far, we'll model $\chi(k)$ with FEFF calculations.

Data Reduction: Converting Raw Data to $\mu(E)$

Starting with measured intensities before and after the sample, we construct $\mu(E)$: Transmission XAFS: $\mu(E)t = \ln(I_0/I_t)$

Fluorescence XAFS: $\mu(E) \propto I_{ m f}/I_0$

 $I_{\rm f}$ may be the

- the intensity from a single fluorescence ion chamber (Lytle detector)
- the sum of several signals from a multi-element solid-state detector.

Merging Data, Aligning Data, Deglitching

Real Data is typically measured in several scans.

These scans can be *merged* together to give better statistics. Important issues when processing real data

- The monochromator energy calibration may drift with time.
 - scans can be aligned so that E_0 is constant for all scans.
 - a Reference Channel often a metal foil can be measured during the scan and used for energy alignment.
 - ▶ if the drift is bad enough (every scan, etc), consult the beamline scientist.
- At certain energies, I_0 jumps a *glitch* that ma not normalize out of $\mu(E)$. These points should be removed.

Other corrections that could be made:

- *self-absorption* for concentrated samples measured in fluorescence.
- *detector dead-time* for fluorescence measurements with a solid-state detector.

ATHENA and/or SIXPACK can deal with all of these.

Data Reduction: Pre-Edge Subtraction, Normalization

Data reduction of $\mu(E)$ data goes like this:

Pre-Edge Subtraction

We subtract away the background that fits the *preedge* region. This gets rid of the absorption due to other absorption edges (say, the Fe L_{III} edge).

Normalization

We estimate the *edge step*, $\Delta\mu_0(E_0)$ by extrapolating a simple curve the above $\mu(E)$ to the edge.

$$\mu_{\mathrm{Norm}}(E) = \mu(E)/\Delta\mu_0(E_0)$$

Data Reduction: Normalized XANES and E₀

XANES

The XANES part of $\mu(E)$ shows a fairly rich spectral structure. We'll use this for XANES analysis.

Derivative

We can select E_0 roughly as the energy with the maximum derivative. This is somewhat arbitrary, so we'll keep in mind that we may need to refine this value later on.

Data Reduction: Post-Edge Background Subtraction

Post-Edge Background

We don't have a measurement of $\mu_0(E)$ (the absorption coefficient without neighboring atoms). We approximate $\mu_0(E)$ by an adjustable, smooth function: a *spline*.

This can be somewhat dangerous – a flexible enough spline could match $\mu(E)$ and remove all the EXAFS! We want a spline that will match the *low frequency* components of $\mu(E)$.

Data Reduction: $\chi(k)$, k-weighting

 $\chi(k)$

The raw EXAFS $\chi(k)$ decays quickly with k.

We emphasize the higherk portion of the spectra by multiplying by k^2 or k^3 .

k-weighted $\chi(k)$: $k^2\chi(k)$

 $\chi(k)$ is composed of sine waves, so we'll Fourier Transform from k to Rspace. To avoid "ringing", we'll multiply by a window function.

EXAFS Fourier Transform: $\chi(R)$

$\chi(R)$

Peaks in $\chi(R)$ often correspond to "coordination shells". The Fe-O distance in FeO is 2.14Å – the first peak is at 1.6Å.

This distance shift is due to the *phase-shift*: $sin[2kR + \delta(k)]$.

$\chi(R)$ is complex:

Usually only the amplitude is shown, but there are oscillations in $\chi(R)$.

Both real and imaginary parts are used in modeling.

Fourier Filtering

 $\chi(R)$ often has well-separated peaks for different "shells".

This shell can be isolated by a Filtered Back-Fourier Transform, using the window shown for the first shell of FeO.

 $\chi(q)$ ("Q-space")

This results in the filtered $\chi(k)$ for the selected shell.

Many analysis programs use such filtering to remove shells at higher *R*.

Don't do it - it's too hard.

Fourier Transforms

Fourier Transforms are an important part of XAFS Analysis:

$$\chi(R) = \operatorname{FT}[\chi(k)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \, e^{i2kR} \, k^w \, \chi(k) \, \Omega(k)$$

- $\Omega(k)$ is the Window Function
- w is the k-weighting

We really use a discrete version and Fast Fourier Transform

$$\chi(R_m) = \frac{i\delta k}{\sqrt{\pi N_{\rm fft}}} \sum_{n=1}^{N_{\rm fft}} e^{2\pi i n m/N_{\rm fft}} k_n^w \chi(k_n) \Omega(k_n)$$

- $\chi(k)$ is put on a uniform k-grid with spacing of $\delta k = 0.05 \text{ Å}^{-1}$.
- $\chi(k)$ is filled with zeros past the real data range.
- $N_{
 m fft}=$ 2048: $\chi(k)$ can go to 102.4 ${
 m \AA}^{-1}$ (\sim 40 ${
 m keV}$) past the edge.
- $\chi(R)$ is on a *R*-grid with spacing \sim 0.031 Å, and can go to 31.4 Å.

Fourier Transforms: Basic Properties

Fourier Transforms: Basic Properties(2)

 \Rightarrow

Fourier Transforms are complex:

Typical Window Functions A Window Function:

- goes from 0 to 1 and back to 0
- *dk* gives the width of the Window "sill"

Most important rule:

Pick a window type and stick with it.

Kaiser-Bessel and Hanning are the most common.

Fourier Transform Window Types

Fourier Transform Window and real data

Changing dk and Window functions often gives small changes to $\chi(R)$.

But changing the *k*-weighting has a significant impact:

Fe-Fe scattering dominates with higher w.

low w emphasizes low-k, and low-Z scatterers.

high w emphasizes high-k, and high-Z scatterers.

This is important when trying to determine the Z of a scatterer.

Again, w = 2 and w = 3 are most common, and recommended.

Fourier Transform Window and k_{\min}

 k_{\min} and k_{\max} are important too.

- $k_{\rm max}$ should be the end of useful data.
- With k-weight = 2, 3, it is not too important to avoid "very low k".

Use Kaiser-Bessel with dk = 4, $k_{\min} = 2 \text{ Å}^{-1}$ Use k-weight=2, or 3. Don't obsess too much.

$$\chi(E) = \frac{\mu(E) - \mu_0(E)}{\Delta \mu_0(E_0)}$$

We don't know $\mu_0(E)$, so use a *spline*: a smooth, adjustable function. This is dangerous – a flexible enough spline could remove all the XAFS. ATHENA chooses a background spline for $\mu_0(E)$ to

minimize the low-R components of χ

 $\mu_0(E)$ is adjusted, $\chi(k)$ is Fourier Transformed, and $\chi(R)$ below R_{bkg} is minimized. $\chi(R)$ above R_{bkg} is ignored.

Most important parameters:

- **Q** R_{bkg} : *R* below which $\chi(R)$ is reduced.
- Weight: used for Fourier transform: use 1, or 2.
- Solution E_0 : May need to adjust for initial guess (max of $d\mu/dE$).

Background Subtraction in ATHENA / IFEFFIT

Effect of R_{bkg} on XAFS $\chi(k)$ and $\chi(R)$: 1.21.5 $egin{array}{c} R_{
m bkg} = 0.1\,{
m \AA} \ R_{
m bkg} = 1.0\,{
m \AA} \end{array}$ $egin{array}{c} R_{
m bkg} = 0.1 \, {
m \AA} \ R_{
m bkg} = 1.0 \, {
m \AA} \end{array}$ 1.0 1.0 $k^2\chi(k)\,({\rm \AA}^{-2})$ 0.5 $|\chi(R)|~({\rm \AA}^{-3})$ 0.8 0.6 0.0 -0.5 0.4-1.00.2-1.50.0 6 10 12 14 16 3 $k(Å^{-1})$ R(Å) $\chi(k)$ for FeO with $R_{\rm bkg} = 0.1 \,{\rm \AA}$ (stiff $\chi(R)$ for FeO with $R_{\rm bkg} = 0.1$ Å (stiff spline) and $R_{\rm bkg} = 1.0$ Å. spline) and $R_{\rm bkg} = 1.0$ Å.

Rules of thumb:

Use $R_{\rm bkg} = 1.0 \,{\rm \AA}$ or half the near-neighbor distance.

Don't spend too much time on background subtraction.

Background Subtraction in ATHENA / IFEFFIT

XAFS Analysis with FEFF & IFEFFIT

The XAFS Equation used with FEFF and IFEFFIT:

$$\chi(k) = \sum_{j} \frac{N_j f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{kR_j^2} \sin[2kR_j + \delta_j(k)]$$

- The sum is over Scattering Paths of the photo-electron. Both: Single Scattering absorbing atom ⇒ neighbor atom ⇒ absorbing atom Multiple Scattering absorbing atom ⇒ neighbor atom ⇒ neighbor atom ⇒ ...⇒ absorbing atom
- f(k) and $\delta(k)$ are photo-electron scattering amplitude and phases:
 - Energy (k) dependent.
 - Z dependent Z of the scattering atoms(s).
 - non-trivial: must be calculated (or extracted from measured spectra).

Knowing f(k) and $\delta(k)$, we can determine structural information:

- *R* near neighbor distance.
- N coordination number.
- σ^2 mean-square disorder in *R*.

FEFF calculates f(k) and $\delta(k)$ for all *Scattering Paths* in a cluster of atoms:

build atomic potentials. To simplify calculations,

Use the *Muffin Tin Approximation*: atomic potentials up to a uniform Fermi level (no chemical bonding).

- etermine important scattering paths.
 - Build paths from a selected *central atom* in a cluster of atoms
 - decide which ones are "degenerate".
 - decide which ones are unimportant for XAFS
- **(a)** move photo-electron along path to determine f and δ as a function of k:

propagate \Rightarrow scatter \Rightarrow propagate \Rightarrow

Scattering Amplitude and Phase-Shift: f(k) and $\delta(k)$

The scattering amplitude f(k) and phase-shift $\delta(k)$ depend on Z:

f(k) peaks at higher k as Z increases. For heavy elements, there is a minimum in f(k).

The phase shift $\delta(k)$ also shows strong Z dependence, and has sharp jumps for heavy elements.

Z can usually be determined to ± 5 . Fe and O can be distinguished N and O cannot be distinguished. FEFF includes sophisticated techniques to calculate of f(k) and $\delta(k)$:

Curved Wave Effects the photo-electron goes out as spherical wave and scatters from atoms with finite size.

Muffin-Tin Approximation: Makes the calculations tractable, if approximate.

Extrinsic Losses $\lambda(k)$: self-energy and core-hole lifetime.

Intrinsic Losses S_0^2 : the absorbing atom relaxes to the presence of the core hole. *Multiple Scattering* the photo-electron can scatter multiple times. Most

important at low k and for *linear paths*.

Polarization Effects synchrotron beams are highly polarized, which needs to be taken into account. This is simple for *K*-edges ($s \rightarrow p$ is dipole).

$\lambda(k)$: The Photo-Electron Mean-Free Path

The $e^{-2R/\lambda(k)}$ term in the XAFS Equation accounts for how far the photo-electron can travel and still return (in phase) to the excited atom.

- inelastic scattering of photo-electron.
- finite lifetime of the core-hole (fs).

 $5\text{\AA} < \lambda < 25 \text{\AA}$ for the EXAFS *k*-range. The λ and R^{-2} terms make EXAFS a *local probe*. XANES ($k < 3 \text{\AA}^{-1}$) is sensitive to longer distances.

Multiple Scattering

The photo-electron can scatter multiple times:

A Path Formalism is used in the "Real Space" calculations:

$$G = G^{0} + G^{0}tG^{0} + G^{0}tG^{0}tG^{0} + G^{0}tG^{0}tG^{0}tG^{0} + \dots$$

 G^0 = propagation of the electron, t = scattering from neighboring atom.

Triangle Paths with angles $45 < \theta < 135^{\circ}$ are weak, but there are lots of them.

Linear paths with angles $\theta \approx 180^{\circ}$ are very strong: the photo-electron is focused through an atom. Can be used to measure bond angles!

A FEFF Path looks the same for Single and Multiple Scattering!

S_0^2 : Amplitude Reduction Term

The *other* electrons in the absorbing atom can relax due to the core-hole, giving an Amplitude Reduction Term:

 $S_0^2 = |\langle \Phi_f^{N-1} | \Phi_0^{N-1} \rangle|^2$

$$\begin{split} |\Phi_0^{N-1}\rangle &= (N-1) \text{ electrons in unexcited atom.} \\ \langle \Phi_f^{N-1}| &= (N-1) \text{ electrons, relaxed by core-hole.} \\ S_0^2 \text{ is taken as a constant:} & 0.7 < S_0^2 < 1.0. \\ \text{and is used as a Fitting Parameter that multiplies } \chi: \end{split}$$

S_0^2 is Completely Correlated with N (!!!)

 S_0^2 is usually constant for experimental data on the edge and beamline (energy resolution).

 S_0^2 can be determined with an *Experimental Standard* with known N.

Good News: you don't have to worry about most of this!

The normal scheme for using FEFF with ARTEMIS is:

- Start with a structure close to the atomic structure of your sample, and generate x,y,z coordinates:
 - simple crystal structure? use ATOMS input format
 - Protein Data Bank? use CRYSTALLFF
- **2** Run FEFF, generating a list of *feffnnnn.dat* files for each path.
- **③** Use these for Paths in ARTEMIS to model measured XAFS.

May need to use a few structures to find appropriate paths for your system.

Having good starting structures is important!

XAFS Analysis with ARTEMIS and IFEFFIT

To model XAFS as a Sum of Paths:

$$\chi(k) = \sum_{j} \frac{S_0^2 N_j f_j(k) e^{-2R_j/\lambda(k)} e^{-2k^2 \sigma_j^2}}{k R_j^2} \sin[2kR_j + \delta_j(k)]$$

we may refine these Parameters For Each Path:

In XAFS	IFEFFIT	
Equation	Parameter	Meaning
NS_0^2	amp	Amplitude Factor: N and S_0^2
E ₀	e0	Energy Shift (where $k = 0$)
ΔR	delr	Change in path length $R = \Delta R + R_{ m eff}$
σ^2	sigma2	Mean-square-displacement in R

(R_{eff} is the starting *R* value for the FEFF Path).

Each Path Parameter for Each Path could be refined. OR: These can be tied together using mathematical constraints. (Other Path Parameters: higher order cumulants, energy broadening, ...)

XAFS Analysis: Information Content in XAFS

The Number of Parameters we can measure from our data is limited:

where Δk and ΔR are the k- and R-ranges of the data. Typical: $k = [2.0, 12.0] \text{ Å}^{-1}$ and R = [1.0, 3.0] Å, gives ~ 12 Parameters.

Fit statistics, and Error Bars need to reflect this limit.

Need to constrain Parameters R, N, σ^2 for different paths and different data sets (different edge elements, temperatures, etc)

It's also possible to add restraints to describe external knowledge of the system (crystallography, Bond Valence, etc).

Use as much other information about the system as possible!

XAFS Analysis: Building Models

The basic difficulties in EXAFS Analysis are

- The scattering factors f(k), $\delta(k)$ are non-trivial (we use FEFF).
- The basis functions (Paths) are not very well resolved, and their number grows exponentially with R.
- There's not much information in a real measurement:

$$N_{
m idp} pprox rac{2\Delta k\Delta R}{\pi}$$

We address these with methods to:

- **1** reduce the number of Paths to consider (Fourier analysis).
- **2** parameterize *ab initio* calculations of f(k), $\delta(k)$ (use FEFF
- Out down the number of independent variables in the fit, while keeping a meaningful analysis.

We parameterize the EXAFS with a physical model, and then put *Constraints* and *Restraints* on the parameters in a least-squares analysis.

Constraints in IFEFFIT / ARTEMIS

All Path Parameters written in terms of Generalized Variables:

Parameter = Variable	Fit Einstein Temperature
guess e0 = 1.0 path(1, e0 = e0) path(2, e0 = e0)	<pre>set factor = 24.254337 #= (hbar*c)²/(2 k_boltz) # mass and reduced mass in amu set mass1 = 63.54, mass2 = 63.54 set r_mass = 1/ (1/mass1 + 1/mass2)</pre>
mixed coordination shell	<pre># the Einstein Temp will be adjusted in the fit! guess thetaE = 200 # use for data set 1, T=77 set temp1 = 77</pre>
set S02 = 0.80	<pre>def scapath = factor*coth(thetaE/(2*temp1))/r_mass) path(101, sigma2 = ss2_path1)</pre>
<pre>guess x = 0.5 path(1, Amp= S02 * x) path(2, Amp= S02 * (1-x))</pre>	<pre># use for data set 2, T=300 set temp2 = 300 def ss2_path2 = factor*coth(thetaE/(2*temp2))/r_mass) path(201, sigma2 = ss2_path2)</pre>

Other Examples:

- force one *R* for the same bond for data taken from different edges.
- model complex distortions (height of a sorbed atom above a surface).

Fitting with IFEFFIT / ARTEMIS

IFEFFIT optimizes the Fitting Parameters with a least-squares fit to the Data

Find the variables that make the Model best match the Data

 χ^2 (don't confuse with EXAFS $\chi !!)$ describe the fit:

$$\chi^2 = \sum_{i}^{N_{\rm fit}} \frac{[\chi_i^{\rm data} - \chi_i^{\rm model}(x)]^2}{\epsilon^2}$$

 $N_{\rm fit}$ = number of data points, x = set of variables, ϵ = noise level in the data. We should consider only $N_{\rm idp}$ data points:

$$\chi^2 = \frac{N_{\rm idp}}{\epsilon^2 N_{\rm fit}} \sum_{i}^{N_{\rm fit}} [\chi_i^{\rm data} - \chi_i^{\rm model}(x)]^2$$

Fitting is typically done in *R*-space to ignore higher shells.

Goodness-of-Fit statistics:

- chi-square: $\chi^2 = \frac{N_{\rm idp}}{\epsilon^2 N_{\rm fit}} \sum_i^{N_{\rm fit}} [\chi_i^{\rm data} \chi_i^{\rm model}(x)]^2$
- reduced chi-square: scale χ^2 by the "degrees of freedom" $\chi^2_{\nu} = \chi^2/(N_{\rm idp} N_{\rm varys})$ A Good Fit should have $\chi^2_{\nu} \sim 1$. This *never* happens! $\chi^2_{\nu} \sim 10$ or higher, typically.
- R-factor: Fractional misfit.

$$\mathcal{R} = \sum_{i}^{N_{\rm fit}} [\chi_i^{\rm data} - \chi_i^{\rm model}(x)]^2 / \sum_{i}^{N_{\rm fit}} [\chi_i^{\rm data}]^2$$

Error bars for Fitting Parameters are calculated, and increase χ^2 by χ^2_{ν} . Correlations between parameters are also calculated.

Fitting with ARTEMIS

ARTEMIS Main Page for selecting: Data File(s) Fit *k* and *R* ranges Paths to use in Fit Plot Results.

- Fit with multiple k-weights.
- Use Paths from multiple FEFF calculations
- Keep a history of fits.

Simple ARTEMIS example: FeO

FeO has a rock-salt structure.

To model the FeO EXAFS, we'll run FEFF with the crystal structure for FeO, with Fe-O distance R = 2.14 Å (a regular octahedra).

We'll use ARTEMIS to refine R, N, σ^2 , and E_0 .

<u>File Edit G</u> DS <u>D</u> ata S	igm Fits Iheory Paths Plot								
Current project: /Users/newville/Desktop/EMBLD7/FeO/Fit_1stshell.a									
Atoms feff.inp Interpr	Atoms feff.inp Interpretation								
Titles	Titles								
name: Fe0 formula: Fe0 sites: Fe1.01									
Space group f m 3 m	Core BIX Y Z Te								
A 4.27740	1 * Fe 0.00000 0.00000 0.00000 Fe1								
8 4.27740	2 💠 0 0.50000 0.50000 0.50000 01								
C 4.27740									
Alpha 90.00000									
Beta 90.00000									
Gamma 90.00000									
Cluster size 6.00000									
Edge K -									
Shift vector 0.00000									
0.00000									
- Edit colocted site									
Elament: Tro:	Dafina								
x:] v:]	Z: New								
Run Atoma	Document: Atoma								

ATOMS Page in ARTEMIS:

Crystal structure \rightarrow atomic cluster for FEFF Put in space group, cell parameters, and fractional coordinates (or look them up) and push

Run ATOMSgenerate input for FEFFRun FEFFcalculate χ for all Paths.

Path List from Running FEFF

FEFF Paths for Fe-O, showing

- Path Length: $R_{\rm eff}$
- Path Degeneracy: N
- Path Importance
- Path Geometry

Each FEFF Path includes a degeneracy (number of equivalent paths). That gives 3 Amplitude terms:

$$N_{
m total} = {
m DEGEN} imes S_0^2 imes N$$

This is a useful feature (really!), but it can cause confusion.

Path Parameters

Each Path has a list of Path Parameters

•
$$N \times S_0^2$$

$$\bullet E_0$$

•
$$\Delta R$$

•
$$\sigma^2$$

Each Path Parameter can each be assigned a Fit Variable

More generally:

Path Parameters are functions of *Fit Variables*.

Also: FEFF'S DEGENERACY can be set to 1 here so that the fitted N represents coordination number.

Fit Variables and Parameters

Cum	Current project: /Users/newville/Desktop/EMBL07/FeO/Fit_1stshell									
#	Name	Math Expression								
1	s: \$02	0.75								
2	g: enot	0								
3	g: delr	0								
4	g: sigma2	0.003								
5	g: N1	6								
51		12								
Ed S0:	Edit selected parameter									
U	ndo edit	New Grab Discard Hide								
F	Document: Guess. Def. Set									
<u> </u>										
Loade	d parameter	list from GDS page								

Guess, Def, Set Page: The List of Variables, can be

- guess floated / refined in fit.
 - set fixed / not refined.
 - def defined in terms of other variables.

Variables can also be:

restraint used as a restraint

- skip saved, but not used in fit
- after evaluated definition, bit used in fit.

Fit to 1st shell of FeO: 1 Path (Fe-O) We'll refine ΔR , N, σ^2 , and E_0 .

 $|\chi(R)|$ for FeO data (blue) and fit (red).

Fit results:

 $\begin{array}{ll} N & = 5.2 \pm 0.8 \\ R & = 2.10 \pm 0.02 \, {\rm \AA} \\ E_0 & = -2.3 \pm 1.8 \, {\rm eV} \\ \sigma^2 & = 0.013 \pm 0.003 \, {\rm \AA}^2. \end{array}$

First Shell Fit (continued)

1st shell fit to FeO in *k* space. There is clearly another component in the XAFS!

 1^{st} shell fit in R space.

 $|\chi(R)|$ and $\operatorname{Re}[\chi(R)]$ for FeO (blue), and a 1st shell fit (red).

Though the fit to the magnitude didn't look great, the fit to $\operatorname{Re}[\chi(R)]$ looks very good.

Fit Results and Log Report

000	XA	rtemis palette	es	•	
Ifeffit Results File	s Messages Ecl	ho Journal	Properties	× v	
Results from the last	fit	F	law log file	- Save	Dismiss
Project title : 1 Comment : 1 Prepared by : Contact : Started : This fit at : Environment : 1 Figure of merit :	Fitting Fe0_PNCC2 Fit #1 23:30:51 on 1 Dec 20:36:36 on 9 Jul Artemis 0.8.009 v 4	AT_dat.chi cember, 2005 Ly, 2007 Lsing darwin,	perl 5.0080)01, Tk 804.	027, an
Independent points Number of variables Chi-square Reduced Chi-square R-factor Measurement uncerta Number of data sets	= 20 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 1	5.947265625 4.00000000 594700038 3.013527000 0.012841123 0.00214588 0.005731023 1.00000000			
Guess parameters +/ enot = delr = sigma2 = N1 =	- uncertainties -1.5273680 -0.0385560 0.0109860 4.3390890	(initial gue +/- 1.4 +/- 0.0 +/- 0.0 +/- 0.0	ess): 1998920 (0 1134120 (0 0021260 (0 5396570 (6), 0000)), 0000)), 0030) 5, 0000)	
Set parameters: SO2 =	0.75				
Correlations betwee sigma2 and N1 enot and de All other correlati	n variables: > 0.8 lr> 0.8 ons are below 0.2	3799 3710 25			
					1

The Results Page gives detailed fit statistics, and results for Variables and Path Parameters.

2 Path Fit to FeO

Adding the Fe-Fe Path, and refining R, N, σ^2 (use the same E_0 as for Path 1):

 $|\chi(R)|$ data for FeO (blue), and 2-Path fit (red).

Results are consistent with the known values for FeO: 6 O at 2.13Å, 12 Fe at 3.02Å.

Fit results:

Path	N	R (Å)	σ^2 (Å ²)	ΔE_0 (eV)
Fe-O	6.0(1.0)	2.10(.02)	0.015(.003)	-2.1(0.8)
Fe-Fe	11.7(1.3)	3.05(.02)	0.014(.002)	-2.1(0.8)

Fit Statistics: $R \approx 0.016$ $\chi^2_{\nu} \approx 100.$

These are typical even for a "very good fit" on known structures.

Second Shell Fit to FeO (continued)

The Fe-Fe EXAFS extends to higher-*k* than the Fe-O EXAFS.

Even in this simple system, there is some *overlap* of shells in *R*-space.

The agreement in $\operatorname{Re}[\chi(R)]$ look especially good – this is how the fits are done.

Multiple Scattering Example: Cp-MnCO₃

 $\mathsf{Cp}\mathsf{-}\mathsf{MnCO}_3 = \mathsf{tricarbonyl}(\eta^5\mathsf{-}\mathsf{cyclopentadienyl})\mathsf{manganese}(\mathsf{I})$

This molecule has linear Mn-C-O bonds, and two distinct Mn-C distances.

```
To model the EXAFS, we need these paths:
ring
5 Mn-C at \sim 2.13 Å
carbonyl
3 Mn-C at \sim 1.78 Å
3 Mn-O at \sim 2.93 Å
6 Mn-C-O paths at \sim 2.93 Å
3 Mn-C-O-C paths at \sim 2.93 Å
```


The Multiple Scattering Paths will overlap the longer Mn-C(ring) distance!! Using only the single-scattering paths will gives:

- large coordination numbers: 6 Mn-C(ring) at 2.10 Å, 10 Mn-C(carbonyl) at 1.80 Å , and 10 Mn-O (carbonyl) at 2.99 Å.
- E₀ of -13eV (pretty big!).

Multiple Scattering Example: Cp-MnCO₃

R(Å)

The Mn K-edge EXAFS data and fit with 5 paths. Constrained $N_{\rm Mn-O} = N_{\rm Mn-C(short)}$ and used 1 E_0 (-3.6 \pm 2.0 eV).

Path	N	R (Å)	σ^2 (Å ²)
Mn-C(short)	3.6(1.0)	1.80(.02)	0.005(.002)
Mn-C(long)	5.2(1.3)	2.11(.02)	0.004(.002)
Mn-O	3.6(1.3)	2.92(.04)	0.003(.006)

The MS paths overlap the 1st shell.

- Of course, FeO is very easy
- ... it can get more complicated
 - Start out with a First Shell Fit
 - Measure and Fit standards similar to your Systems.
 - Use as much other information as possible.

IFEFFIT and its community

Develoads - Deffit - Health F	indix.				×	
Die Dill Den Habers Boolmari	o 2006 BHD				2	
🐗 + 🔅 + 😴 😳 🚔 🕻	👂 • 🛸 🛗 Hippitas	adacago.edu/fe/it/Downio	6	• • C+	Ð	
IFEFFIT				Scorth Login	0	
stettic						
Downloads	IFEFFIT: Dow	nload Page				
Documentation	The current versio	n of IFEPFIT IS I feffi	1.2.9			
Nailing List	System/Format	From Sourcefor	e.net	From cars.uchicago.edu	1	
YARS	Source Kit:	feffe-1.2.9.tar.gz		fefft-1.2.9.tar.gz		
нир	Windows Installer:	Windows Installer. Ideffic-1.2.9.exe		feffit-1.2.9.exe		
	Mac OS 10.4 Disk Image:	remt-1-2.9-Mac10	4_horae64pre_pkg.dmg	Pefft-1.2.9-Mac10.4_horae62_pkg.dmg		
	Mec OS 10.3 Disk Image:	feffe-1.2.0_Mec1	1.3. drug	Mefft-1.2.0_Mac10.3.drug		
	Mac 06 10.2 Disk Image:	reffs-1.2.4.dmg	fefft-1.2.4.dmg			
	General Notes For platform-speci the Changelog of dectory. The late If you have quest visetits at than The latest ver Software ve PETIT 1 Athena 0.0 Artenis 0.0 Herbactus f	Information, see in est a detailed descrip et distribution carry al product (Fegluaria) rest device (F	Andows, Unix, and MacOS Bons about each resistor, o be found at the 1968D in See consider sending em- ans hot are 107 mil. hot mis in the IFEPFIT family or	X. You can also browse through the source open at "accordings, net. M is area shalling just with a public written. N		

- Free Software.
- Mailing List (400 subscribers).
- Binary Installer for Windows.
- Binary Installer for Mac OS X.
- Linux Packages (debian).
- Source Code (configure/make).
- Decent Docs and Users Guides.
- On-line Tutorials, Examples.

B Ravel (ANL)

(SSRL)

(ANL)

S. Calvin (Sarah Lawrence)

(IIT)

I Rehr (UW)

http://cars.uchicago.edu/ifeffit/

http://xafs.org/

IFEFFIT Home Page:

http://cars9.uchicago.edu/ifeffit

Documentation, Downloads, Mailing List, FAQ

xafs.org:

http://xafs.org: Wiki with more tutorials and other useful information. International XAFS Society:

http://www.i-x-s.org/

Books and Review Articles:

X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, in Chemical Analysis **92**, D. C. Koningsberger and R. Prins, ed., John Wiley & Sons, 1988.

Basic Principles and Applications of EXAFS, Chapter 10 in Handbook of Synchrotron Radiation, pp 995–1014. E. A. Stern and S. M. Heald, E. E. Koch, ed., North-Holland, 1983

Thank you.