

Absorpti	υορ		
	A noneyweir company		
	Absorption edge	Core level	
	K	1s	
	L _I	2 s	
	L _{II}	2 p 1/2	
	L _{III}	2 p 3/2	
	MI	3s	
	M _{II}	3 p 1/2	
	M _{III}	3 p 3/2	
	$M_{\rm IV}$	3 d 3/2	
	M _V	3 d 5/2	
12			

XAS Accessible Elements K-edge EXAFS All elements with Z>18 (Ar) have a																			
HLi	H L ₃ -edge EXAFS Li Be B C N O F N											He Ne							
Na	Mg		L ₃ /.	K-eo	ige I	EX.	AFS							AI	Si	Р	S	CI	Ar
к	Са		Sc	Ті	v	Cr	м	n I	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Y	Zr	Nb	Mo	р То	: 1	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ba	*	Lu	Hf	Та	w	R	e (Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	*	Lr	Rf	Db	Sg	j Bl	h I	Hs	Mt	Ds	Rg				1	1		
										<u> </u>			_						
		*	La	Ce	P	r	Nd	Pm	S	m	Eu	Gd	Tb	Dy	Но	Er	Tn	וו	/b
		**	Ac	Th	Pa	a	U	Np	P	u .	Am	Cm	Bk	Cf	Es	Fm	Mc	1 1	No

Transmission XAFS Experiment : Absorption Length	LOOD A Honeywell Company		
Fe ₃ O ₄ at 7.2 keV			
Density 5.2 g/cm ³			
MW = 231.7 g/mol			
$\sigma_{Fe} = 393.5 \text{ cm}^2/\text{g}; M_{Fe} = 55.9 \text{ g/mol} f_{Fe} = 55.9/231.7 = 0.724$			
$\sigma_0 = 15.0 \text{ cm}^2/\text{g}; M_0 = 16.0 \text{ g/mol}$ $f_0 = 16/231.7 = 0.276$			
$ \mu = 5.2 \text{ g/cm}^3 \text{ x } [(0.724 \text{ x } 393.5 \text{ cm}^2/\text{g}) + (0.276 \text{ x } 15.0 \text{ cm}^2/\text{g})] = 1503 \text{ cm}^{-1} = 0.15 \ \mu\text{m} $			
Absorption length = $1/0.15 \ \mu m = 6.7 \ \mu m$			
38			

The E	A Honeywell Company									
 Need to scan the monochromator using appropriate settings for an EXAFS experiment. 										
	Region	Starting	Ending Energy	Step Size						
		Energy (eV)	(eV)	(eV)						
	Pre-edge	-200	-20	5.0						
	XANES	-20	+30	0.5						
	EXAFS	+30	~900	0.05 Å^{-1}						
 In EXAI Typical measur Some b increas 	es relative to FS range con counts time ements take eamline soft ing k.	o a nominal nmon to ste s are 1-15 s few minute ware allows	x-ray absorp p in units of per point, so s to many ho s you to weig	tion edge e k rather tha EXAFS ours. ht the time	energy, ⊨₀ an energy. with					
48										

