

Absorption edge	Core level	
Κ	1 <i>s</i>	
L	2 s	
L _{II}	2 p 1/2	
L _{III}	2 p 3/2	
MI	35	
M _{II}	3 p 1/2	
M _{III}	3 p 3/2	
M _{IV}	3 d 3/2	
M _V	3 d 5/2	

Н	1			-edg							nts wi lge in			· ·				He
Li	Ве]		K-ed									в	С	Ν	0	F	Ne
Na	Mg		123/1	13-00	ige I		II B						AI	Si	Р	S	СІ	Ar
к	Са		Sc	Ti	V	Cr	Mr	n Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	*	Lu	Hf	Та	w	Re	e Os	lr	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn
Fr	Ra	*	Lr	Rf	Db	Sg	Bh	n Hs	Mt	Ds	Rg							
	1	L			1	1				_								
		*	La	Ce	P	r	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Trr	י ו	′b
		**	Ac	Th	P	a	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Mc	i N	ło

Transmission XAFS Experiment : Absorption Length	UCP A Honeywell Company
Fe ₃ O ₄ at 7.2 keV	
Density 5.2 g/cm ³	
MW = 231.7 g/mol	
$\sigma_{\text{Fe}} = 393.5 \text{ cm}^2/\text{g}; M_{\text{Fe}} = 55.9 \text{ g/mol} f_{\text{Fe}} = 55.9/231.7 = 0.724$	
$\sigma_0 = 15.0 \text{ cm}^2/\text{g}; M_0 = 16.0 \text{ g/mol}$ $f_0 = 16/231.7 = 0.276$	
$ \mu = 5.2 \text{ g/cm}^3 \text{ x } [(0.724 \text{ x } 393.5 \text{ cm}^2/\text{g}) + (0.276 \text{ x } 15.0 \text{ cm}^2/\text{g})] = 1503 \text{ cm}^{-1} = 0.15 \ \mu\text{m} $	
Absorption length = 1/0.15 μ m = 6.7 μ m	
38	

The E	Uop A Honeywell Compa				
	to scan the n EXAFS ex		nator using a	ppropriate	settings
	Region	Starting Energy (eV)	Ending Energy (eV)	Step Size (eV)	
	Pre-edge	-200	-20	5.0	
	XANES	-20	+30	0.5	
	EXAFS	+30	~900	0.05 Å^{-1}	
	es relative to	o a nominal	x-ray absorp	tion edge e	nergy, E ₀
 In EXAF Typical measure 	S range cor counts time ements take eamline sof	mmon to ste es are 1-15 s e few minute	x-ray absorp p in units of per point, so s to many ho s you to weig	k rather that EXAFS ours.	an energy.

