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Abstract

Ferroelectric Phase Transitions in Oxide Perovskites Studied by XAFS
by Bruce D. Ravel

Chairperson of Supervisory Committee: Professor Edward A. Stern
Department of Physics

Temperature dependent x-ray absorption fine structure (XAFS) measurements on
several titanium oxide perovskites are presented in this thesis. Measurements on
PbTiO3 and BaTiO3 are presented at temperatures spanning their structural and
ferroelectric phase transitions. Using these XAFS data, I provide direct evidence for
order—disorder behavior in the local structures of PbTiO3; and BaTiO3. The local
structure of PbTiOj3 is shown to be tetragonally distorted at all temperatures, while
that of BaTiOj3 is approximately rhombohedrally distorted at all temperatures. As
the temperature is raised in these materials, long range correlations between the local
distortions change, resulting in the observed sequences of macroscopic phase transi-
tions. The extended x-ray absorption fine structures (EXAFS) of these materials
are analyzed for quantitative evidence of the order—disorder behavior. The details
of the EXAFS analysis techniques are provided. X-ray absorption near edge struc-
ture (XANES) measurements on these materials demonstrate further evidence of the
order—disorder behavior.

A newly developed computer program, XANES, is presented for ab initio calcula-
tions of near edge structures. XANES computes the near edge spectrum simultaneously
with local electronic densities of state within the one—electron, full multiple scattering
formalism using a fast, separable representation of the free electron propagator and
scattering matrices computed using fully relativistic, Dirac—Fock, muffin tin poten-
tials. The calculation is made in a real space basis with no assumption of structural
symmetry or periodicity. After testing XANES on several sample compounds, I demon-
strate the applicability of the code to PbTiO3 and use it to interpret the near edge
spectrum of PbTiOj3 in terms of its local structure. By combining simulations of
XANES spectra with XANES and EXAFS measurements, a structural interpretation



of absorption spectra is presented using nearly the entire information content of the
XAFS signal.
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Chapter 1

INTRODUCTION

This thesis describes in detail the two avenues of research I have pursued as a
student at the University of Washington. The first research interest presented here is
a structural analysis using the X-ray Absorption Fine Structure technique of the fer-
roelectric perovskites PbTiO3 and BaTiOj3 through their ferroelectric and structural
phase transitions. I present new evidence for a crucial order—disorder component to
these nominally displacive phase transitions. My second research interest has been
the development of a real-space, full multiple scattering computer program for the ab
initio calculation of X-ray Absorption Near Edge Structure and local electronic den-
sities of state. This technique is particularly applicable to the study of ferroelectric

materials.

1.1 XAFS Studies of Ferroelectric Phase Transitions

In the first part of this thesis, I apply the XAFS technique to the study of the
structural and ferroelectric phase transitions in two ferroelectric materials, PbTiO;
and BaTiOs, and also to the structurally related but non—ferroelectric EuTiO3. The
aim of this research is to understand the nature of the local structure in these materials
through their structural and ferroelectric phase transitions.

A ferroelectric crystal, such as PbTiO3 or BaTiOj, possesses a dipole moment in
its low temperature phase that is correlated across the entire length of the crystal.
This polarization can be redirected by application of an electric field. The presence of
an inherent dipole moment in a ferroelectric crystal can be understood from its atomic
structure. When atoms within the unit cell of the crystal are displaced from sites
of point centrosymmetry, the electron density within the unit cell is redistributed to
accommodate the displacement. The enhanced electron density in some regions of the
unit cell and diminished density elsewhere induces a dipole moment within the cell.
When these displacements within the unit cells are correlated in direction from cell
to cell across the length of the crystal, so are the dipole moments. Then the crystal



possesses a net polarization and is ferroelectric. At some temperature this macro-
scopic polarization vanishes and the material transforms into a phase with an average
crystallographic structure lacking the displacements which cause ferroelectricity.

PbTiO3 and BaTiO3; are end members of solid solutions with PbZrO3, SrTiO;
and others forming materials of considerable technological interest. Applications in-
clude electro-mechanical and electro—chemical transducers, optical elements, sensors,
storage devices, pyroelectric devices, and others. The relatively simple structure of
perovskite ferroelectrics makes them attractive for both basic experimental and the-

oretical investigation.

There are two canonical models commonly used to describe the the structural
phase transitions observed in PbTiO3; and BaTiOs, the displacive and the order—
disorder. In a displacive transition, the potential surface in which the atoms rest
changes with increasing temperature. At low temperature, the atoms populate a
potential minimum which is displaced from a point of centrosymmetry. As the tem-
perature rises, the potential minimum moves towards the point of centrosymmetry.
Finally, in the high temperature phase, the minimum resides at a point of centrosym-
metry. This is shown schematically in Fig. 1.1a. In the order—disorder model, the
shape of the potential surface remains unchanged with temperature. As the temper-
ature is raised, the hopping rate between adjacent minima in the potential surface
increases, leading to a disordered structure. In the high temperature phase, the hop-
ping rate is such that the equivalent sites are equally populated. This is shown in
Fig. 1.1b.

It is possible for these two models to yield very similar results for certain kinds of
measurements. For example, a measurement of Bragg peaks without consideration
of the diffuse part of the diffraction spectrum may not distinguish between these two
models above the phase transition. The measurement of Bragg peak positions av-
erages the possible displacements depicted in Fig. 1.1b as wvectors. Since these local
displacements are equal in magnitude but opposite in sign, their average is zero. Con-
sequently the positions of the Bragg peaks are insensitive to the differences between
these two models above T,. A diffraction measurement may lack the resolution to
distinguish between thermal disorder and the structural disorder introduced by the
disordering of the local displacements. Likewise, if the hopping rate between the two
potential minima in the order—disorder model is significantly faster than the time scale
of the lattice dynamics, then many hopping events will happen within the time scale
of the excitation in the Raman measurement. The sensitivity of this measurement to
the lower symmetry of the disordered local structure will thus be lost.



increasing
temperature
displacive order-disorder

Figure 1.1: Schematic of displacive and order-disorder transitions showing the tem-
perature dependence of the local displacements in the two models. (a) shows the
shrinking of the potential barrier between two local potential wells which may be
occupied by an atom as predicted by the displacive model. These wells represent
the possible positions of some atom in a structurally distorted phase and the barrier
between them is located at a site of point centrosymmetry. As the temperature rises,
the minimum of the potential well and therefore the atomic displacements moves
towards the central position. Above T, the potential minimum is located at a cen-
trosymmetric site. (b) shows the disordering of local displacements among equivalent
sites. As the temperature increases, the hop rate over the potential barrier also in-
creases. Finally the local displacements become totally disordered but the shape of
the potential surface remains unchanged.

The perovskite structure, shown in Fig. 1.2, is cubic and of space group P m 3 m.
Its stoichiometry is ABOj3, where the A and B cations are usually metals and the O
anion is usually oxygen or fluorine. As shown in the schematic, an A cation occupies
each of the corners of the cubic unit cell, the B cation occupies the cell center, and an
anion occupies each of the faces. The anions form a rigid octahedron whose motion
tends to be a key component in the phase transitions of perovskite compounds. The
various lower symmetry phases of PbTiO; and BaTiOj3 involve distortions to this
structure.

In the non—cubic, ferroelectric phases of these materials, the macroscopic polar-
ization points in a direction consistent with the symmetry of the structural phase.
In the tetragonal, ferroelectric phase of PbTiOg3, the macroscopic polarization points
along a (001) crystal axis. In the rhombohedral phase of BaTiO;3 the macroscopic



polarization points along a (111) crystal axis. In the orthorhombic and tetragonal
phases of BaTiO3 the polarization points along (011) and (001) axes, respectively.

The structural symmetries of these crystals as measured by Raman spectroscopy
[1,2] and by diffraction [3,4] follow the behavior of the polarization, which is the
macroscopic order parameter. Both measure titanium displacements in directions
parallel to the macroscopic polarization in the ferroelectric phases of both materials.
In the high temperature phase, wherein the polarization vanishes, diffraction observes
cubic symmetry.

Both PbTiOz and BaTiO3 display thermodynamic properties consistent with
many features of the classic theory of displacive phase transitions [5]. Both show
underdamped, zone centered soft modes of diminishing frequency as the transition
temperature to the lower symmetry, ferroelectric phase is approached from above,
which is characteristic of the displacive type of transition. Both have large Curie—
Weiss constants, which relate the dielectric susceptibility to the temperature and
transition temperature, characteristic of displacive ferroelectrics [6]. Because of these
thermodynamic properties, the measurements of the diffraction and Raman spectra,
and the behavior of the macroscopic order—parameter, it has long been assumed that
the local structure behaves identically to the average structure. That is, the mi-
crostructure of these materials is presumed to share the symmetry elements of the
macroscopic order parameter. This simple but physically incomplete model suffices
to explain many of the properties of the material which rely upon long-range corre-
lations.

In recent years a wide variety of techniques have suggested the possibility that per-
ovskite type materials display order—disorder character, including infrared reflectivity
measurements [7], cubic phase x-ray diffraction[8], electron spin resonance[9], impul-
sive stimulated Raman scattering[10,11] and others. Also direct evidence of order—
disorder character in perovskite materials which were traditionally considered to be
of the displacive sort has been demonstrated using XAFS. These include KNbO3 [12],
KTag.91Nbg 09O3[13-15], NaTaO3[16], Nagg2Ko.18TaO3[16] and PbZrO3[17]. Some of
the results of this thesis on order—disorder behavior in PbTiO3 were previously pre-
sented in Refs.[18] and [19].

XAFS is an ideal technique for studying the microstructure of these materials.
As mentioned above, both diffraction and Raman can fail to resolve differences be-
tween the two models in certain cases. When measuring only Bragg peak positions
and widths, diffraction can lack the resolution necessary to distinguish thermal and
structural disorder. In contrast, XAFS naturally possesses a high degree of spatial



Figure 1.2: The ABOj perovskite crystal structure. The A cation (grey ball) is at the
corner of the cubic unit cell. The B cation (white ball) is at the center of both the
oxygen (black ball) octahedron and the cubic unit cell. In this thesis, the A cation is
one of lead, barium or europium and the B cation is titanium.

resolution and it is sensitive only to local and not to long-range correlations in struc-
ture. Furthermore, the time scale of the XAFS measurement is far shorter than the
time scale of the lattice vibrations. XAFS can resolve a disordered structure in a
case where an atom is hopping between two or more positions displaced from sites of
point centrosymmetry on a time scale that may be averaged by a Raman measure-
ment. Consequently XAFS is capable of resolving behavior of the local, short-range
correlations in a material which differs from the behavior of the macroscopic order
parameter.

In this thesis [ analyze both the extended x-ray absorption fine structure (EXAFS)
and the x—ray absorption near edge structure (XANES) of PbTiO3 and BaTiO3. From
this I verify the existence of an order—disorder component to the local structure of
the phase transitions in these materials.

1.2 Full Multiple Scattering XANES Calculations

In the second part of this thesis, Chs. 8 and 9, I present the theory and results of a
recently developed computer program for calculating the X-ray Absorption Near Edge
Structure (XANES) employing a real-space, full multiple scattering (FMS) approach.



XANES is an enticing spectroscopy as it can provide local chemical and structural
information even in complex and disordered systems. As such it is applicable to
a wide variety of materials of interest to many different scientific disciplines. The
fundamental physics of the multiple scattering approach to XANES calculations has
been well established for many years [20-24]. Still calculations are of limited accuracy
for complex materials, particularly near the absorption edge, the region presumably
containing the local chemical information avidly sought in so many systems. Even in
the case of crystalline materials, band structure approaches [25,26] to the XANES
problem are unsatisfactory as they usually neglect the effect of the core-hole. Recent
advances in multiple scattering theory have seen considerable success when applied
to the Extended XAFS (EXAFS) spectrum [27, 28].

The XANES code presented here applies recently developed algorithms and exten-
sions which have proven successful in application to the extended part to the XAFS
spectrum. These include relativistic Dirac-Fock atomic potentials [27,29] and an effi-
cient and quickly convergent expansion of the free electron propagator [30]. In recent
years the speed and computational power of computers has risen dramatically. At
the same time the cost of processors and computer memory has plummeted. Today
calculations are tractable on desktop computers that only five years ago required ac-
cess to a supercomputer. As FMS techniques are computational expensive, requiring
significant CPU, memory, and storage capacity, the prospect of approaching an old
problem with new resources is attractive.

Using the FMS technique, my program simultaneously calculates XANES and
local electronic densities of states as well as chemical quantities such as Fermi energies
and charge transfer within solids. After presenting the theory of the FMS technique
and demonstrating the utility of the code on a variety of simple physical systems,
I tie together the two portions of this thesis by presenting XANES calculations on
PbTiO3;. The XANES spectrum of ferroelectric oxides such as those presented in the
first portion of this thesis are well understood in terms of the local structure of these

materials.

1.3 A Note on Presentation

To aid in the legibility of this thesis, I have adopted certain typographic conventions.
Following common convention, normal text is set in computer modern roman and
mathematical text is set in mathematical italics. Additionally T have adopted the
following type faces:



Monospaced type is used to indicate the names of computer files or verbatim tran-
scriptions of the contents of computer files.

SMALL CAPs are used to indicate the names of computer programs.

Sans—serif type is used to indicate matrix quantities. One special matrix, the full
multiple scattering matrix, is set in blackboard bold: G. Matrix quantities
denoted by Greek characters are set in bold face: d, o

I made extensive use of a number of software tools while preparing this thesis
and feel T should acknowledge them. The thesis was typeset using the KTEX [31]
typesetting system and the University of Washington thesis style package [32]. The
text was composed using the EMACS [33] text editor along with the AUCTEX [34],
REFTEX [35], and BIB-CITE [36] packages of editing utilities. The bibliography was
compiled using BIBTEX [37]. Figures in this thesis were created using the programs
GNUPLOT [38], XMGR [39], XF1G [40], and XmoL [41].



Chapter 2

THE EXAFS EQUATION AND EXAFS ANALYSIS

X-Ray Absorption Fine Structure (XAFS) spectroscopy is used to determine local
atomic structure from the oscillatory portion of the x—ray absorption cross section of a
material. The physical process measured in the XAFS experiment is the promotion by
an incident photon of a deep core electron belonging to some atom in the material into
a state above the Fermi level of the material. Because each element has a different set
of electron binding energies, the absorption cross section due to a particular element
within the material can be probed by tuning the x—ray source to an absorption energy
associated with that element. By measuring the cross—section above a binding energy
associated with a particular element, the local configurational environment about each
such atom can be determined.

The XAFS spectrum is traditionally divided into two regions. The measurement
of the absorption spectrum in a region between the Fermi energy and about 30eV
above the Fermi energy is referred to as the X-Ray Absorption Near Edge Spectrum
(XANES). Above that energy is the Extended XAFS (EXAFS) region. In Ch. 7 -9
I discuss measurements and calculations of XANES spectra. In this chapter and in
Ch. 3 — 6 I discuss measurement and analysis of EXAFS data.

For an isolated atom, for instance a monoatomic gas, the cross section measures
the probability of promoting a deep core electron into a continuum state. The mea-
sured spectrum looks roughly like a decaying step function!. This step function is
broadened by the lifetimes of the core hole and of the excited photoelectron as well
as by the energy resolution of the experimental apparatus. When an atom is in con-
densed matter, this broadened, decaying step function is modulated by an oscillatory
fine structure associated with the presence of the surrounding atoms. This oscil-
latory structure can be isolated and analyzed to yield information about the local
configurational environment within which the absorbing atom sits.

In the first part of this chapter, I derive a heuristic expression for this oscillatory

! This statement assumes a one—electron picture and neglects many—body effects. Structure associ-
ated with multi—electron excitations can be observed in the absorption spectra of many elements.
See, for example, Ref. [42].



structure and provide a physical basis for its analysis. The derivation presented here
is a plane wave approach to the EXAFS equation. This approach is conceptually
transparent and incorporates much of the essential physics. However, the effects of
curved waves and self energy are neglected by the plane wave approach. The places
where curved wave and other effects are critical to a proper development of the
EXAFS formalism are carefully noted. See any of Refs. [24,27,43-46] for a formal
development of modern EXAFS theory. In the rest of the chapter I outline the
analytical procedures used to extract the structural information. Finally I discuss

sources of measurement error in an EXAFS experiment.

2.1 Heuristic Development of the EXAFS Equation

2.1.1 Single Scattering EXAFS

When a deep core electron is promoted to a state above the Fermi energy, the outgo-
ing wave function may be expressed as an outwardly propagating photoelectron wave
of the form e™*" /r, where k is the wavenumber of the photoelectron. In condensed
matter, other atoms are encountered by this photoelectron within the lifetimes of the
core hole and the photoelectron. These surrounding atoms are scattering sites and
these scattered waves interfere with the outwardly propagating photoelectron. This
quantum interference is the source of the oscillatory fine structure in the measure-
ment of the x-—ray cross section. Starting with this simple picture of a propagating
photoelectron and backscattering wave, I derive an expression for the fine structure
X- This is a K shell, single scattering (SS) derivation within the small atom ap-
proximation which is simple and underscores the essential physics of the interference
phenomenon. Towards the end of the derivation, I discuss the many improvements
to the small atom model, which is inadequate for rigorous, quantitative analysis of
EXAFS data. In the following section I discuss multiple scattering.

Consider the interference between the photoelectron and the backscattering from
an atom at r;. The backscattered wave is a spherical wave of the form

6ik|1‘—ri\

I (2.1)

as it propagates from a center at atom ;. The photoelectron wave-number £ is related
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to the Fermi energy by

2m(E — Er)

k= 2

: (2.2)
In discussions of EXAFS analysis, the Fermi energy EFr is often called Ej. For the
remainder of this chapter I will use the latter notation.

The amplitude of the backscattered wave depends on two factors, 1) a dimension-
less scattering amplitude for atom 7 and 2) the value of the outwardly propagating
photoelectron at the position r;. Putting these pieces together, placing the absorbing
atom at the origin so that rq = 0, and taking the real part, I obtain an expression of
the form

e

w(k) ~ Tm (mmW) . (2.3

There are phase shifts associated with the electron propagating into and out of
the potentials of the scattering site and of the absorbing site (see for example page
405 of Ref. [47]). There is also a phase shift of § for an outwardly propagating K
shell spherical wave. Including these yields

62ikri+¢i(k)—ﬂ'/2
~ Fik) sin (2:kr; ;
< 08 i (2 + 1), 2.5

Eq. (2.5) is only an approximate equality, even within the small atom approxi-
mation, because it neglects two important amplitude factors. The first is a thermal
attenuation. At finite temperature, the bond between atom ¢ and the central atom
deviates from its average length <|7°Z — 'r'o|> due to thermal motion. Assuming this
thermal motion is Gaussian and denoting the root mean square deviation in bond
length as o;, the probability of finding the atom at »; is

1 |7'i - ’f’i|2
- _ Y 2.6

The effect of this distribution is to attenuate the signal by a factor exp(—2k?c?),
which is similar in form to the crystallographic Debye-Waller factor.
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The second amplitude attenuation is due to the finite lifetime of the core hole and
of the photoelectron. Both of these effects as well as any experimental broadening
can be expressed as a mean free path A(k) and included in the expression for x(k) as
exp(—2r/\).

Finally the EXAFS equation within the small atom approximation is written as

F;(k
xi(k) = i )2 sin(2ikr; + ¢(k)) e 72777 ¢=2i/AR), (2.7)
(k?“l)
To consider the effect of all single scatterings from the surrounding atoms, a
summation over all different kinds of scattering sites ¢ is performed

= in(k)
2
= Z i S sin (2ikr; + ¢i(k)) e “2K207 o —2ri/Mk), (2.8)

In this equation N; is the number of equivalent atoms at distance r;. 1 have also
explicitly included an important many-body contribution to the EXAFS equation, S2,
the passive electron reduction factor which is due to the relaxation of the remaining
electrons in the absorbing atom after the creation of the core hole [48].

Eq. (2.7) is not appropriate for EXAFS analysis. The small atom approximation is
too severe of an approximation for quantitative analysis of EXAFS data. Much more
appropriate is a “spherical wave approximation” [43] in which the form of Eq. (2.7)
is preserved but Fj(k) is replaced by FY (k, R) and the calculation is made using a
complex momentum p. The curved nature of the propagating photoelectron and the
finite size of the scatterers introduce the R dependence in the calculation of Ffﬁ . The

complex momentum is given by [28]

p=\/2(E — Viul(E)) +iT /2. (2.9)

Vine(E) is the potential of the muffin tin interstice. The calculation of the muffin tin
includes the energy dependent self-energy, so V;,; is energy dependent and complex.
[ is the line width of the core-hole state.

Considering these effects is essential for obtaining accurate quantitative results
from EXAFS analysis. Ref. [28] prescribes a method for considering these curved
wave and self-energy effects while still casting the EXAFS equation in the form of
Eq. (2.7).
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2.1.2  Multiple Scattering EXAFS

Many interesting problems require consideration of atoms beyond the first shell where
a single scattering formulation of EXAFS is often insufficient. Consideration of mul-
tiple scattering (MS) events, i.e. the scattering of the photoelectron from two or
more of the surrounding atoms, is required for detailed resolution of local structures
in many materials. The multiple scattering code FEFF presents a particularly conve-
nient solution [27,30] to the MS problem.

The conceptual key to the approach of FEFF is to consider scattering geometries
rather than bond lengths. The relevant length scale of each scattering geometry j is
its half path length r;, i.e. half of the sum of the lengths of the legs of the scattering
path. For a single scattering path, the half path length is the same as the bond
length, ri* = r#*. The effects of the scattering amplitudes of each atom in a path
as well as the scattering angles are included into an effective scattering amplitude
Ffﬁ(k). The phase shifts, including their angular dependencies, of each atom in the
path is included into an effective phase shift qﬁ?ﬁ (k). Using the half path lengths and
the effective amplitudes and phase shifts, FEFF is able to express the MS EXAFS
equation in a form analogous to Eq. (2.8)

N:S2F (K 2y
X(k) _ Z J(f]k—])Q() sin (2”{77’] + ¢jﬁ(k)) 6—2k20']2. 6727"1‘/)\(]9) (210)
r
[ J

pPtlallpaths j

Here the sum is over all scattering geometries j. The term Fjeﬁ (k) is the source of
the name FEFF. Note that Ffﬁ(k) depends on path length and properly considers
curved wave and self-energy effects for all orders of scattering.

There are many analytical advantages to the path formalism introduced by FEFF.
As is discussed later in this thesis, Eq. (2.10) is conveniently parameterized by vari-
ables which can be optimized in the data analysis. Another advantage is that struc-
tural disorder is handled in a transparent manner. All effects in y due to structural
disorder are included automatically by the summation of paths without the need to
consider the algebra introduced in Refs. [48] and [49] to handle structural disorder.

2.1.3 Other Corrections to the EXAFS Equation

In Eq. (2.10), k is the real momentum referenced to the Fermi energy. In analysis it
is common to adjust the energy scale of the calculation to match that of the data. A
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shift of the energy scale §Fy enters Eq. (2.10) as

K = \/k2 - 5E0<2;Ze) (2.11)

where m, is the electron mass. k is computed from energy reference of the experiment
by Eq. (2.2) and %' is inserted into Eq. (2.10).

At least one 0FE, parameter is always needed when fitting EXAFS data using
fitting standards from FEFF. This is because the absolute energy scale of the FEFF
calculation must be adjusted to the calibration of the monochromater used in the
experiment. For many materials, the use of neutral atomic spheres in the construction
of the muffin tin potential in FEFF may result in significant disagreement between the
experiment and the phase shifts d)jﬁ(k) calculated by FEFF. As discussed in Ref. [50],
one ad hoc way of resolving this disagreement is to allow the possibility of different
0 Fy shifts for each type of backscatterer. This results in different § Ey corrections for
each path in Eq. (2.10). In this case Eq. (2.11) is used on a path-by—path basis.

At high temperatures or in the case of anharmonic bonds, the assumption in
Eq. (2.6) that the deviation around some bond length r; is described by a Gaussian
distribution is inadequate. Higher cumulants of the distribution may be added to
Eq. (2.10) by correcting the phase of each term in the sum by —4ik*C3 /4 and the
amplitude by e 2*'C1i/3 (5. and C,; are the third and fourth cumulants of the
distribution for path j. These are defined for SS paths in Ref. [51]. In materials
where the Gaussian distribution is inadequate, neglecting C5; and Cjy; results in
errors in the determination of structural parameters such as path length and o2.
Anharmonic effects are negligible in the materials presented in this thesis.

Because of experimental resolution or because of errors in the determination of
the self-energy used to calculate Ffﬁ(k) in FEFF, it may be necessary to modify the
mean free path A\. In FEFFIT, this correction is done on an energy scale using the
same complex momentum used in the FEFF calculation. The details of this correction
to the amplitude of the path are presented in Ch. 6 of the FEFFIT document [52].
Amplitude corrections in the form of mean free path corrections were used in the the
analysis presented in this thesis.
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2.2 Background Removal

The absorption cross section p is conveniently separated [53] into the atomic back-
ground g9 and the scattering contribution y by

WE) = po(E) (1 + x(E)) (2.12)

Background removal is the process of approximating the functional form of po(FE) and
subtracting it from p(F) to isolate x(F). The background removals in this thesis were
performed by the program AUTOBK [54]. Other approaches to background removal
are given in Refs. [55, 56].

po(E) in Eq. (2.12) is the absorption cross section of an embedded atom, i.e. the
absorbing atom in the potential environment of its neighbors but without the con-
tribution of the scattering from its neighbors. Consequently, this py(FE) is different
from the cross section of the free atom. Often po(E) shows low frequency oscillatory
structure due to scattering of the photoelectron from the edge of the embedded atom
potential [57,58]. Knowledge of the form of 1q(E) thus requires detailed knowledge
not only of the embedded atom potential but of multi-electron effects and of the
experimental setup, including the energy response of the detectors, the energy de-
pendence of the attenuation due to air and other objects in the experimental path,
the harmonic content of the beam, and others. Because experimental effects are dif-
ficult to know ab initio, it is usually necessary to rely upon empirical methods of
determining po(F). The algorithm used by AUTOBK uses the information content
of the u(E) signal and, optionally, a fitting standard from Feff to distinguish the
background from x(FE).

AUTOBK uses a set of b-splines [59] to approximate the functional form of p(F).
The knots of the spline are placed evenly in photoelectron wavenumber k. The number
of knots are determined by the information content of the background portion of the
spectrum. As suggested by Eq. (2.10), the photoelectron wavenumber k and the
path length 2R are Fourier conjugate variates. The shortest path length thus sets a
lower limit on the contribution to the frequency content of p(E) due to scattering
from the neighboring atoms. Thus the low frequency portion of p(E) is due to uo(E)
while the high frequency portion is due to x(E). The cutoff frequency between these
two regimes is 2Ry, where Ry, corresponds to a distance smaller than nearest
neighbor bond length. If the functional form of py(F) is to be approximated in some
energy range AFE corresponding to a wavenumber range Ak, then the number of knots
Nin = 2Ry Ak /7 used in the spline is determined from the information content [60]
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of that portion of the signal. The evenly spaced knots are separated by the spacing
between independent points. In practice, the swiftly varying part of the background
function near Ej is excluded from the optimization in AUTOBK. The high frequency
components of the swiftly varying part of po(FE) can difficult to distinguish from the
frequency content of x(FE). By excluding that part of u(F) in AUTOBK, the spectral
separation between o and y is valid.

The spline coefficients at each knot are determined by optimizing the Fourier
components of x(k) in the frequency range between 0 and Ry,. The optimization
is performed using a Levenberg-Marquardt non-linear least-squares minimization
[61]. The knot coefficients may simply be chosen to minimize the amplitude of the
low frequency components of y(k). This may not be satisfactory as there often
are sources of broadening which cause leakage of the structural signal into the low
frequency range. A preferable choice is to optimize the low frequency components
of x(k) to best fit the low frequency components of a standard y(k). Usually a
calculation from FEFF is used for the standard, although data can be used as well.

w(E) data is often displayed after pre—edge removal and normalization [62]. The
pre—edge removal refers to the process of regressing a line to the data well below the
Fermi energy then subtracting this line from all data points. This serves to make the
pre—edge region zero and the data above the edge positive definite. A line is then
regressed to the data in some energy range well beyond the edge. The edge step, duq,
is the height of this line at Ej. The fine structure is then

p(E) — po(E)

X(E) = 50

(2.13)
Because the po(E) found by AUTOBK can include experimental effects, normalizing
by the edge step as shown is usually preferable to normalizing by the functional form
of uo(E). x(FE) is converted to x(k) by Eq. (2.2). Normalizing to a single number
introduces an energy dependent attenuation to the data due to the energy dependence
of the absorption of the embedded atom. An approximation to this effect for use in
the analysis of x(k) is given in Sec. B.2.2.

2.3 Fitting EXAFS Data

The computer program FEFF provides fitting standards in the form of the terms in
the summation in Eq. (2.10). EXAFS data is analyzed by using FEFF’s calculations of
Fjeﬁ(k) and ¢;ﬁ(k) and parameterizing the other terms in Eq. (2.10). The parameters
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are optimized to produce the best fit of the theory to the data. The program used
in this thesis to perform this optimization is FEFFIT. [52] FEFFIT uses the same
Levenberg—Marquardt minimization [61] as does AUTOBK.

FEFFIT determines a best fit by optimizing the parameters in Eq. (2.10) for each
path then summing the paths to produce a function to compare with the data. The
Levenberg—Marquardt algorithm works by minimizing a statistical parameter called
X? [63]. x? is evaluated using the complex Fourier transforms y(R) of the data and
of the FEFF calculation.

2
Nidp

N

=1

X(Ri)thy - X(Ri)ezp

oF)

— (2.14)

x? is evaluated at each grid point i in the space of the Fourier transform. Typically a
fast Fourier transform is used which requires input data on a uniform grid in k£ space,
so the grid spacing in R is determined. At each point i the difference between the
theory and the data is normalized by the measurement uncertainty o; at that point.

Some range Ak in k space is the bounds of the Fourier transform. The summa-
tion in Eq. (2.14) is over all points within some range AR of the Fourier transform
X(R). This defines the bandwidth of the EXAFS signal and specifies the number of
independent points N;g, in the measurement. From Refs. [60] and [64]

2AEAR
Nigy = == +

2 (2.15)
The addition of two independent points is explained in Ref. [64]. It is important to
note that this addition applies to the entire portion of the data analyzed. If a data
range is subdivided into two or more ranges, the addition of two points of information
applies to the sum of subranges, not to each subrange individually.

The prefactor in Eq. (2.14) thus normalizes the evaluation of x? to the number
of independent points in the measurement, independent of the density of the energy
grid on which the absorption spectrum was initially measured.

The measurement uncertainty is, in practice, not evaluated at each point in R
space. Instead, the uncertainty is assumed to be shot noise in k£ space which cor-
responds to white noise in R space. Thus a single number &, is pulled outside the
summation in Eq. (2.14). In FEFFIT G, is evaluated by measuring the mean value of
the data in the R range from 15 to 25 A. This range is assumed to be well above any
structural contribution in real data. For reasons discussed in Sec. 2.4, &, typically
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underestimates the true measurement uncertainty (which includes systematic as well
as statistical errors) by about one order of magnitude.

The x? of Eq. (2.14) is minimized by adjusting the various structural and electronic
parameters in Eq. (2.10) for each path. Clearly each of these parameters cannot be
varied independently due to the bandwidth limitation to the information content
evaluated in Eq. (2.15). FEFFIT uses a sophisticated macro language to represent
the parameters for each scattering path in terms of some smaller number of fitting
parameters. In this way physical constraints are built into the fitting model. In
Appendix A I describe in detail how I built physical constraints into my fitting models
for PbTiO3, BaTiO3, and EuTiO3 using FEFFIT.

To evaluate the differences between different fitting models which may use different
numbers of fitting parameters, it is useful to evaluate the reduced x? using the number
of variables N,,, actually used in the fit

1
2= 22 2.16
X, = X (2.16)
V:Nidp_Nvar

The number v is call the degrees of freedom of a fit. When the measurement uncer-
tainty &, is correctly evaluated, x2 ~ 1 for a good fit [63]. A fitting model for which

X2 increases by more than a factor 1 + %ﬁ (63, 65] is considered statistically worse.

From the covariance matrix evaluated by the minimization algorithm, FEFFIT can
extract error bars on the variables and correlations between the variables. These
numbers are written to one of the output files of FEFFIT and are essential to inter-
preting the physical validity of the fitting model. The error bars reported by FEFFIT
are scaled to the size of the measurement uncertainty by multiplying the diagonal
elements of the covariance matrix by the value of y,. Doing so assumes that a fit
is a good fit and that the value of 5, was underestimated as the random errors in
an EXAFS experiment are typically much smaller than the systematic errors. While
it may not be true that some particular fit is a good one, not scaling the size of
the error bars leads to significant underrepresentation of uncertainties of the fitting

parameters.

FEFFIT calculates one more useful statistical parameter, an R—factor which mea-
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sures the percentage misfit of the the theory to the data

2

)Z(Ri)thy - X(Ri)ezp

2

N
2
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(2.17)
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The R-factor can be helpful determining whether the reason for a x2 > 1 is the
underestimation of &, or simply a poor fit. R is usually smaller than a few percent
for a good fit. As seen in Table 5.4, R was about % percent for fits with 10 < 2 < 85.

2.4 Interpreting Reduced Chi—Square

As discussed in Ref. [65], the uncertainty in a good EXAFS measurement is generally
dominated by systematic errors. Often the statistical errors of the measurement are
small compared to various systematic sources of error. This is almost always true for
transmission experiments which are characterized by a large signal-to—noise ratio.
x> is normalized by the estimated statistical uncertainty. If the statistical errors
dominate, then x? ~ 1 for a good fit. That x?2 is, in general, larger than 1 even for
fits that looks good upon inspection and give physically reasonable results indicates
that systematic errors dominate. We account for this by scaling the error bars on our
fitting parameters by a factor of y,. Often the absolute error in a fit is quite small
with an R—factor of less than 1 percent. In a fit with small absolute error but a large
X2 due to incorrect measurement of ., the measured value of 2 provides a means of
comparing different fitting models. If the x2’s of the two models differ by more than
a factor of 1 + 2—\/‘/3, then the model with the smaller x? is significantly better.

Two structural models may be statistically indistinguishable based on evaluation
of their x2’s, but yield physically distinguishable results. In such a case, one fitting
model may be rejected on the basis of a physical argument. An example of this is
shown in Ch. 5 in the analysis of the barium K edge EXAFS of BaTiO3. The tem-
perature dependence of the mean square displacements o2 in bond lengths using one
structural model in that example is less physically reasonable than that for another
structural model. The structural model yielding physically reasonable results is the
preferable model.

In a carefully executed EXAFS experiment, the statistical errors are limited by
shot noise, thus are quite small given the large count rates available at synchrotron
sources. Most sources of systematic error (sample inhomogeneity, detector noise,
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beam harmonic content, and others) can be reduced to negligible levels by good
experimental practice.

Handling systematic errors is more difficult. Unlike the effect of statistical errors,
the effects of systematic errors cannot be reduced by the collection of more data. Also
systematic errors are not expected to be normally distributed in the data, thus these
errors can introduce a systematic bias into the measurement of physical parameters
from the data. The dominant remaining sources of error are the uncertainties of the
removal of the background function py and of the fitting standards.

The effect of the background subtraction can be characterized by performing mul-
tiple background subtractions with AUTOBK on the same data, each time changing
one or more of the parameters used by AUTOBK to perform the Fourier transform
or to optimize the spline in R space. The standard deviation of the x functions
from these background removals can be calculated and added in quadrature to the
measurement uncertainty used by FEFFIT to normalize x2. Adding this systematic
uncertainty in quadrature to &, treats the systematic error as a random error. The
main consequence of treating a systematic in this manner is to incorrectly estimate
the uncertainties in the fitting parameters. The uncertainty in the fitting parameters
varies as the square root of the degrees of freedom whereas the uncertainty due to
systematics is constant. Consequently FEFFIT’s estimation of error bars tends to err
on the side of being too large.

Evaluating the effect of the uncertainty in the fitting standards is trickier and
perhaps impossible. FEFFIT uses a minimization technique that assumes quadratic
deviation of x?2 in all directions in the n-dimensional hyperspace of fitting parameters
near the best—fit set of parameters. Implicit in this method is the assumption that the
lineshape to which the data is fit is a known lineshape. That is, of course, not true in
EXAFS fits. FEFF, the source of fitting standards, employs various approximations
(spherical muffin tins, neutral atoms within their Norman radii, some parameteri-
zation for exchange and correlation terms in the potential, and others) to compute
these fitting standards. Consequently FEFF provides only an approximation to the
true lineshape. This introduces error into the fits which is difficult to characterize
and which leads to evaluated x2’s in excess of 1 even for excellent fits.

In the analysis presented in this thesis, systematic errors are treated as though
they are another source of random errors. We thus add the systematic errors in
quadrature with the statistical. The main consequence of doing this is to incorrectly
estimate the size of the error bars on the physical parameters obtained from the
data. Typically the size of the error bars is overestimated by adding systematic error
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in quadrature. For example, in Ch. 4 the uncertainties on most of the local structural
parameters shown in Figs. 4.6 — 4.9 are considerably larger than the scatter of these
values about their average temperature behavior.

That x?2 is typically in excess of 1 is not a reason to doubt EXAFS results. Pru-
dent use of statistical parameters such as x> and the R-factor combined with well
constructed fitting models and a good physical intuition make for excellent EXAFS
analysis.



Chapter 3

XAFS EXPERIMENTS

XAFS data is not difficult to collect, providing a protocol for sample preparation
and data collection is strictly followed. In this chapter I will discuss many of the as-
pects of this protocol with particular attention to their application to the experiments
and samples presented in this thesis.

3.1 Data Collection

Fig. 3.1 shows a schematic of an absorption experiment for both the fluorescence
and transmission collection geometries. All of the data presented in this thesis were
collected at beamline X11A at the National Synchrotron Light Source (NSLS) at
Brookhaven National Laboratory in Upton, NY, USA. The x-rays at X11A are pro-
duced by a bending magnet.

Mono
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Source

Amplifiers &
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Figure 3.1: Schematic of the XAFS experiment. The setup for both the transmission
and fluorescence geometries in depicted.

3.1.1 The Monochromator

X-rays are monochromated with a double crystal, silicon monochromator. For data
collected at the titanium K edge 4966 eV and the europium L;;; edge 6977 eV, silicon
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crystals cut along a (111) face were used. For data collected at the barium K edge
37441 eV, (311) crystals were used. Due to the size of the crystals and their placement
within the goniometer controlling the monochromator, the (111) crystal has an energy
range that extends from about 4 keV to about 25 keV and the (311) crystal has a range
of about TkeV to 41keV.

The monochromator selects the Bragg angle for the desired photon energy. This
angle # in Fig. 3.1 is the angle between the face of the first crystal and the propagation
vector of the incident broad spectrum x-ray beam. The Bragg angle is determined
[66] by matching the desired photon wavelength with the planar spacing of the crystal

. _1( he
f = sin (ZdEV)' (3.1)
Here h and ¢ are Plank’s constant and the speed of light, d is the planar spacing of
the (111) or (311) crystal, and E, is the desired photon energy. The energy scan in
the XAFS experiment is thus accomplished by rotating the monochromator through
the appropriate range of . The second crystal follows the first, remaining nearly
parallel, to re—diffract the single energy beam in a direction parallel to the broad
spectrum beam.

One of the disadvantages of using a double crystal monochromator is that it allows
passage of harmonics of the selected energy as those photons will also satisfy the
Bragg diffraction condition. This is a serious problem for the data quality, as will be
discussed in Sec. 3.1.4. The intensity of the beam diffracted by the second crystal has
a Gaussian profile in angle about the optimal angle. This is called the rocking curve.
The rocking curve becomes narrower in @ for higher harmonics. The best solution
for harmonic rejection is to choose a plane for the silicon crystal that rejects certain
harmonics. Both the (111) and (311) planes reject the second harmonic but allow the
third. Since the rocking curve is considerably wider for the principle frequency than
for the third harmonic, it is useful to slightly detune the second crystal by rotating it
slightly away from the optimal #. As the rocking curve is significantly narrower for
higher harmonics, detuning enough to reduce the fundamental by a small amount is
enough to reject most of the intensity of the third harmonic. For example, at 10 keV
with a silicon (111) crystal, detuning such that the intensity of the fundamental is
reduced by half reduces the third harmonic by about 1073 [67].

At low energies, the second crystal is detuned to attenuate the intensity of the
harmonic by about 20 percent. Due to the narrow rocking curve for the third har-
monic, this will reject in excess of 90 percent of the harmonic intensity. It is not
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necessary to detune the second crystal for the barium K edge. Its third harmonic
E;5 > 110keV is so far above the critical energy that the intensity of those photons is
negligibly small.

The second disadvantage of the double crystal monochromator is that the vertical
position of the monochromatic beam changes with energy as the crystal angle changes.
Typically, the entire table supporting the sample, detectors, and other equipment is
moved to track the beam position. In this way, the beam strikes nearly the same spot
on the sample at all energies.

3.1.2 The Slits

There are two sets of slits at X11A. The slits depicted in Fig. 3.1 are placed on the
optical table and define the size of the beam that strikes the sample. These are called
the table slits. The other slits define the size of the broad spectrum beam that strikes
the first crystal of the monochromator. These are called the pre-mono slits.

There are two considerations to choosing the dimensions of the slits, 1) maximizing
throughput and 2) maximizing energy resolution. These two considerations are at
odds. Throughput is obviously increased by opening the slits to allow more photons
to pass through. Due to the angular divergence of the x-ray source and the geometry
of the monochromator, there is a spread of energies in the vertical direction, thus
energy resolution is lost by opening the vertical slits too wide. It is easy to tell when
energy resolution is being compromised by slit size. When two scans through the
absorption edge of the sample are taken and the slits are closed by some amount
between scans, it will be obvious if resolution was compromised by the original slit
size if the features around the edge are noticeably sharper in the scan with narrower
vertical slits. The vertical portion of the table slits should be closed until no change
in resolution between scans is observed. The slits should then be opened to the widest
setting at this fine resolution to allow the most photons through.

At lower energies the most convenient setup is to open the pre—mono slits quite
wide (about 2mm at X11A) and use only the table slits to define energy resolution. At
high energies I found that closing the pre-mono slits to about 0.5 mm was necessary
to obtain acceptable energy resolution. The angular divergence of the source is a
bigger constraint at high energies since % is much smaller at high energies. At the
barium K edge, the energy resolution was about 2eV while at the titanium K and
europium Lj;; edges it was about 0.5eV.

The horizontal dimension of the slits is usually determined by the size of the
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sample. Near the center the beam does not change significantly in intensity, quality, or
harmonic content across its horizontal dimension, so placement of sample horizontally

is not so critical.

The final consideration regarding the slits applied to an experiment in which the
polarization of the x—ray beam is used. In the plane of orbit of the storage ring, the
photons generated by the bending magnet are linearly polarized. Above and below
the plane of orbit, the beam is left and right handedly elliptically polarized. In the
single crystal XANES experiments described in Ch. 7. the linearity of the polarization
was exploited. Fortunately, the intensity of the beam is highest in the plane of orbit,
exactly where the beam is linearly polarized. By moving the table supporting the
experiment up and down, the table slits will pass through the plane of orbit. The
point of highest throughput as measured by the detector immediately behind the slits
is the within the plane of orbit. This should be checked frequently during the course
of the experiment, if the polarization is important to the result.

3.1.83 The Ion Chambers

For all of the experiments presented in this thesis, I used ionization chambers as
detection devices, thus I will restrict my discussion of x—ray detection to the use of
ionization chamber. For the rest of this thesis I will use the shorthand ion chamber.

An ion chamber [68,69] is a gas filled box. The x-rays pass through the gas and
between the plates of a capacitor inside the box. The gas molecules are ionized by the
x-rays and the ions and electrons are collected on the plates of the capacitor. Each
photon ionizes many molecules. The resulting current is amplified and converted to
a voltage. This voltage is stored on a computer as a measure of the intensity at the
detector.

The voltage read by the ion chamber is

eE NG

V=
Eeg

(3.2)
Here e is the electron charge, E, is the energy of the incident photons, N is the
number of photon per second incident on the chamber, G is the amplifier gain of the
current—to-voltage converter, and .z is the effective ionization energy of the gas.
For noble gases F.y ~ 30eV. From this, the counting rate on the ion chamber is
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determined

N4-1020-V

N
GE,

(3.3)

Because of the high intensity of the signal at X11A, special electronics are of-
ten not required for the current—to—voltage conversion. Modest amplifier gains are
usually sufficient to obtain measurable voltages and the count rates are high enough
that an integration times of one or a few seconds usually suffices. For this purpose
commercially available converters are usually used. For experiments that involve low
count rates and large amplification, low-noise converters [15] created and developed
by members of the Stern Research Group have been used.

The main advantage of ion chambers is their ease of use. Following a few simple
rules virtually guarantees reliable x—ray detection. It is crucial to choose an appropri-
ate mixture of gases. Noble gases or nitrogen are common choices. Several common
atmospheric gases such as oxygen and water vapor are poor choices as they introduce
nonlinearities in the counting of the photons. The gases should be chosen such that
an appropriate number of photons are absorbed by each chamber. In Fig. 3.1, the
ion chamber labeled I, measures the intensity of the beam incident upon the sample.
Clearly the Iy chamber should not be so absorbing that too few photons actually
strike the sample. For the experiments described in this thesis, about ten percent of
the photons are absorbed in the [y chamber,

Toassivg .9 — e=sinon (3.4)

Fincident
Here x is the length of the chamber and ji, is the absorption of the mixture of
gases. The absorption coefficients p of the gases are tabulated [70] as functions of
energy. These gases may be sealed inside the ion chamber or flowed slowly through
it. X11A provides a flow meter connected to tanks of helium, nitrogen, and argon for
this purpose. When using more expensive gases such as krypton, the chambers are
usually sealed.

The chambers labeled It and Ir are used in the transmission and fluorescence
geometries. It is desirable to choose gases appropriate to detecting all of the photons
incident upon these chambers. Choosing gases such that zu = 3 in Eq. (3.4) is a good
choice. This absorbs 95 percent of the incident photons. Using a thicker mixture of
gases is a poor idea. The fringing fields near the ends of the capacitors within the
ion chambers will not follow Eq. (3.2). If the mixture of gases is overly thick, a large
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fraction of the photons will be counted within the fringing field and the data will be
contaminated.

The final consideration for ion chambers is the voltage applied to the capacitor
plates. The voltage-current curve [68] for a an ion chamber has a broad plateau at
some voltage range. The voltage on the chamber should be chosen within this plateau
so that the current collected on the capacitor is insensitive to fluctuations in applied
voltage.

3.1.4 Collection Geometries
The Transmission Geometry

The transmission geometry uses the ion chamber labeled Ir in Fig: 3.1. In this
geometry the beam passes through the sample and the attenuation of the beam by
the sample is directly measured. The attenuation is

Ir = Tye ™), (3.5)

p(E) is the energy dependent absorption of the sample. x is the width of the sample.
The absorption coefficient is then obtained, within an overall scaling factor, from the
voltages on the ion chambers by

zp(F) =1n <£) (3.6)

It

Transmission experiments are the easiest sort of XAFS experiment. If a sample
can be prepared that is appropriate for transmission, it is advantageous to do so.
There are several criteria for the appropriateness of the transmission geometry and
concerns for proper sample preparation.

A transmission experiment is optimized for counting statistics when the sample
thickness x is chosen such that xp & 2.6 [53] above the absorption edge. However, to
minimize systematic error in the data due to sample thickness [71], xApu, the change
in absorption across the edge, should be < 1. Clearly both these criteria cannot
always be satisfied. Of these two criteria, the one resulting in the thinner sample is
chosen. Transmission is not appropriate for a very dilute sample. When less than
about 3 percent of the total absorption in the sample is from the resonant element, the
signal to noise ratio determined from counting statistics for a fluorescence experiment

is superior. None of the experiments in this thesis fell into that category.
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There may be other reasons why a fluorescence experiment might be preferable to
transmission. If, for some reason, a sample cannot be prepared that is thin enough to
meet, the thickness criteria of the preceding paragraph, then fluorescence is required.
The single crystal XANES data shown in Ch. 7 are examples of this. I did not have
access to sufficiently thin single crystals, thus I opted to take the data in fluorescence.

The sample prepared for transmission must be homogeneous. There must be het-
erogeneities neither due to inconsistent thickness of the sample (as in a metal film
rolled into a wedge shape) nor due to gaps through which the x-rays pass without
striking the sample. This effect has been shown on powdered samples for which the
particle size was chosen to be large compared to the the length x required for a
proper sample [72]. As the powder size was increased, that data suffered a signif-
icant attenuation of amplitude due to improper cancellation in Eq. (3.5). Sample
inhomogeneity is a particularly severe problem when the beam possesses significant
harmonic content.

The Fluorescence Geometry

The fluorescence geometry uses the ion chamber labeled Ir in Fig: 3.1. In this ge-
ometry the beam strikes the face of the sample. Secondary photons from the refilling
of the core—hole fluoresce over the entire solid angle. The I'» chamber subtends some
portion of the solid angle. In the case where the sample is very thick compared to
its absorption length and the incident angle of the beam (« in Fig. 3.1) is equal to
the exit angle (the angle between the sample surface and the straight line from the
sample to the detector), the intensity of photons measured at I [53] is

Ir = 0B + ml(E) + ol ®)

(3.7)

te(E) is the energy dependent absorption of the resonant atom, i.e. the signal mea-
sured in the EXAFS experiment. pu,(E') is the absorption of all other atoms in the
material and of the electrons in the central atom that are not the excited electron.
W' (Er) is the total absorption of the material at the fluorescence energy. The sum in
the denominator is the term that accounts for the penetration depth of the x—rays
into the sample. The factor § includes all other factors affecting the measurement,
such as the solid angle subtended by the detector, the fluorescence efficiency of the
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absorbing atom, and the detector gains. In the limit where p/(Er) + pp(E) > p.(E)

I = I(B)B(E)ne(E) (3.8)
u(E) o (%) (3.9)

Fluorescence measurements are the best option for very dilute samples or samples
that cannot be prepared sufficiently thin for transmission. Sample homogeneity is
critical to minimize the systematic error in the data due to spatial inhomogeneities
in the incident beam.

To improve the signal-to—noise of the fluorescence experiment, it is useful to pre-
vent Compton scattered radiation from entering the Ir chamber [73]. Soller slits
which focus on the line on the sample struck by the x-ray beam are used to pre-
vent radiation scattered by air and other sources from entering the chamber. Filters
made from materials with absorption edges between the fluorescence energy of the
measurement and the energy of the Compton scattered radiation are used to prefer-
entially pass the photons in the measurement. Unfortunately the only elements with
absorption edge at energies suitable for a filter for a titanium K edge experiment are
iodine and krypton. L edge filters are less efficient than K edge filters and both of
these elements are an inconvenient for making filters. The fluorescence data in this
thesis were collected with Soller slits but without filters.

There are two important experimental effects that must be considered in the
analysis of fluorescence data. The first is the energy dependence of the detectors.
Since the the fluorescence experiment measures the secondary photon, the photons
incident upon I are always of the same energy. The photons incident upon I, are,
of course, of variable energy. Thus the energy response of the contents of the I
chamber enters into Eq. (3.7) and is neglected in Eq. (3.9). In the EXAFS region,
this introduces a k? dependent attenuation of the signal. Given the contents of the
Iy chamber as input, an additive correction to the measured 0?’s in EXAFS analysis
can be approximated. This is called the I0 correction and is discussed in Sec. B.2.3.

The other experimental effect is the self-absorption correction and is due to the
extent to which p/'(Er) + w(E) > p.(E) is a bad approximation in Eq. (3.8).
This can be a very serious effect with large constant and k? dependent attenuation
of the data. In the limit where the material is very concentrated, say in a metal
foil, p'(Er) + u(E) < pe(E). Then p.(E) cancels and almost no fine structure is
measured! An approximation to this correction is discussed in more detail in Sec.
B.2.4.



29

3.1.5 Measurements at Low and High Temperature

The ferroelectric and structural phase transitions studied in this thesis are induced
by temperature. Consequently I measured XAFS as a function of temperature. For
both low and high temperature measurements, a vacuum is pulled on the sample
with a roughing pump. This produces a vacuum at the level of 10’s of militorr. The
low temperature apparatus cryopumps to a level of about 10 mT below 77 K. The
roughing vacuum is sufficient for high temperature work, although the vacuum shroud
must be cooled with blown air to prevent the failure of the Kapton windows due to
overheating.

At temperatures below room temperature, a Displex cryostat was used. A Displex
is a two stage helium compressor with a copper cold finger. The cold finger is wrapped
with a resistive heating element and is in contact with a temperature sensing diode.
Using the heating element and diode, a commercial temperature controller can control
the temperature at the cold finger between 10 K and 300 K with a stability of about
+1 K. The sample holder is a copper box with slots cut in it for the x—rays to pass
through. The slots are covered with Kapton sheet and the box is closed with an
indium seal. Helium is allowed to diffuse into the sample holder. With the helium
still in the sample holder, the sample holder is mounted onto the cold finger and
plunged into liquid nitrogen. The Displex is turned on and the entire assembly is
placed under vacuum. This procedure reduces the time required to cool the sample
to 10 K. By quickly cooling the Kapton windows of the sample holder, the outward
diffusion of the helium is slowed. The helium sealed within the sample cell serves as a
heat exchange between the sample and the copper sample holder, thus ensuring good
thermal contact between the sample and the cold finger.

For measurements at elevated temperatures, I used a furnace designed by members
of the Stern Research Group. Some of the data were obtained using an old design
which was plagued by electrical problems and by the short life span of its heating
elements. To correct these problems I designed a new furnace, which was built by
Larry Stark of the University of Washington Tool Making Shop. I will only describe
the new furnace, although the two designs are conceptually identical. Both use high—
power resistive heaters to heat a large copper block. The samples are then pressed
against the copper block for thermal contact.

A schematic of the new furnace is shown in Fig. 3.2 and a close up of the main
body is shown in Fig. 3.3. The main body is a copper block. Cut into the face of the
block are four transmission slots. The samples are placed in front of these slots to
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allow passage of x-rays for a transmission experiment. The furnace can also be used
for fluorescence measurements. Drilled into the body of the copper block, as indicated
by the dashed lines in Fig. 3.3, are two holes for housing resistive heating elements.
I chose Watlow Firerod Cartridge heaters which use nickel-chromium resistive wire
surrounded by magnesium oxide insulation. This assembly is sheathed with Incoloy,
which is Watlow’s trademark name for an oxidation and corrosion resistant nickel
alloy. The heaters are rated at 500 W at 120V and can operate at temperatures in
excess of 1100 K. These heaters exceed the power requirements of the furnace for
operation at 1100 K. A Variac transformer is used to step down line voltage, thus
derating the power output of the heaters. Derating the power output lengthens the
lifespan of the heaters.

The Firerod cartridges have convenient electrical leads. They exit the body of the
cartridge at a right angle, which is convenient for the geometry of the furnace. The
leads are well insulated electrically and long enough to leave the volume enclosed by
the radiation shielding covering the body of the furnace. This allows for electrical
contact to the leads in a place that is well removed from the hottest part of the
furnace. The radiation shield is an aluminum can which is bolted onto the circular
mount shown in Fig. 3.2. The can has holes cut into it to allow passage of the x-rays.
This is covered with thin aluminum foil to complete the radiation shielding.!

Cut into the front of the main body of the furnace are two grooves for housing
thermocouples, one on either side of the transmission slots. These are shown in Fig.
3.3 with solid lines. I use K-type thermocouple in a flexible magnesium oxide and
inconel sheath. The grooves are cut to the dimensions of the sheath. It is thus easy to
slide the thermocouple junction up and down along the face of the furnace allowing
temperature measurement at selected spots close to the samples. One of the two
thermocouples is used to control the temperature. the other is used as an indepen-
dent measure of temperature and may be placed a distance away from the control
thermocouple to allow measurement of temperature gradients. The thermocouples
are pressed against the main body by a face plate, which also is used to hold the
samples in place.

The cooling tube shown in Fig. 3.2 is pressed against the back side of the furnace
by another face plate. This tube is normally evacuated, but may be used for gas flow

L At low energies such as the titanium K edge, it is necessary to not place even the thinnest
aluminum foil in the path of the beam. The aluminum is sufficiently absorbing at low energy that
any inhomogeneities in the aluminum will introduce systematic error to the data.
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Figure 3.2: Full schematic of the transmission XAFS furnace. This is not drawn to
scale in the vertical dimension and several parts are left off for clarity. The arrows
from the face plate indicate that it is bolted into place on the main body.
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Figure 3.3: Schematic of the main body of the transmission XAFS furnace showing
the transmission slots, the thermocouple grooves, and the housings for the Firerod
cartridge heaters.
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to expedite the cooling of the furnace after operation at high temperature.

The furnace is designed to hang within a vacuum shroud. The fixture that nests
into the top of the vacuum shroud with o-rings is of the same dimensions as that used
by the Displex, thus the same vacuum shroud may be used for both low and high
temperature measurements. Hanging from the vacuum fixture are two stainless steel
tubes. These tubes are welded to a stainless block, which is then screwed onto the
top of the main body after the heaters are in place, as depicted by the four downward
pointing arrows in Fig. 3.3. Stainless tubing is a good choice for this purpose due to
its low heat conductivity. The tubes each have a bleed hole and are evacuated during
operation.

One face plate presses the copper cooling tube against the back of the furnace for
good thermal transfer to the flowing gas. One or more plates are used on the front to
press the thermocouples against the furnace and to hold samples in place. The face
plates are cut from sterling silver to reduce the emissivity of the furnace. Sheets of
graphoil are placed between the silver plates and the main body?. The sterling silver
remains shiny even in the rough vacuum used in these experiments.

The fixture which nests into the vacuum shroud was designed for ease of use.
It includes a four pair electrical feedthrough for the heaters and thermocouples, a
quick—connect vacuum flange, and a gas flow system with three easy-to—use Nupro
plug valves. The feedthrough and plug valves are not shown in Fig. 3.2.

The furnace is easily broken down into its constituent pieces. The main body is
bolted to the support tubes and all of the plumbing fixtures use Swage-lock connec-
tions. This is useful for maintenance chores such as replacing broken heaters and it
proved useful for recovery from the accident described in footnote 2.

3.2 Sample Preparation

In this section I will discuss the preparation of the samples actually used in this thesis
with discussion of why the methods used yielded high quality data.

2 The necessity of this was learned the hard way. It turns out the diffusion rate between the copper

and silver is quite high at elevated temperature. The melting temperature of eutectic copper—
silver with a few percent of nickel (from the sterling silver) thrown in is about 960 K. The first
time the furnace was used, a significant portion of the main body and the three cover plates in
use melted. The graphoil prevents this diffusion. I now have an interesting molten copper—silver
paperweight on my desk.



34

3.2.1 Powder Samples for Transmission
Thick Samples

Given a source of material of sufficient purity for the intended experiment, there are
two major considerations for the preparation of a sample for transmission EXAFS.
The sample must be homogeneous and it must be of a form suitable for the ex-
perimental conditions. Here I describe the preparation of BaTiO3 samples for the
measurement of the barium K edge?.

I started with BaTiO3 obtained from Aldrich, item #33,884-2. This powder is of
99.9 percent purity and the average particle size of the powder is less than 2 um. The
small size of the particles is an advantage for producing a homogeneous sample. Using
tables [70] of x—ray absorption coefficients, I estimated as described in Appendix B.2.
that an absorption length, the thickness such that zpu ~ 1 in Eq. (3.5), just above
the barium edge in BaTiOj is 95 um. With particles that are much smaller than the
absorption length of the sample, it is easy to make a homogeneous sample.

I wanted my sample to be strong enough that I could handle it with my fingers.
It also needed to handle thermal cycling between 10 K and as high as 1000 K. To
accomplish this, I mixed an appropriate amount of BaTiO3 with enough fine graphite
powder to make a pellet about 500 ym thick when cold pressed in a die of areal
dimension 1.5cm x 0.5cm. This graphite pellet is strong enough to manipulate by
hand and can withstand both high and low temperature. Graphite is a good thermal
conductor thus assuring uniformity of temperature at all points in the sample. That
graphite is a decent electrical conductor is yet another advantage of this method of
sample preparation. The particles of BaTiOg3, and of the other materials studied,
carry a surface charge that causes them to agglomerate into clusters that are large
compared to the absorption length. By mixing the BaTiO3 with the graphite carefully
and for a long time, the BaTiO3; becomes dispersed evenly throughout the volume of
graphite. The breaking of the weak electrostatic attractions holding the agglomerates
together is aided by the conductivity of the graphite. Since the BaTiO3 powder is light
yellow, it is easy to see these agglomerates in contrast to the black of the graphite. As
the BaTiO3 disperses within the graphite and the agglomerates disappear, it becomes
increasingly difficult to see the sample within the graphite. I generally continued

31 prepared samples for the lead Ly edge of PbTiO3 using the method described in this section.
The results of those measurements are described in Refs. [18] and [19] and were the topic of Noam
Sicron’s master’s thesis at The Hebrew University. I will make reference to that work in Ch. 4,
but will not describe it in detail.



35

mixing for some time after no longer observing the sample by eye.

Thin Samples

For the titanium K edge samples of PbTiO3, BaTiO3, EuTiO3 and the europium Ly
edge samples of EuTiOj3 I had similar sample preparation concerns as those described
above. Because these absorption edges are at much lower energy than the barium K
edge T was not able to use as much graphite. Around 5keV one absorption length of
graphite is about 240 ym. Since I did not want to lose too much intensity due to the
absorption of the filler material, I chose to make 100 um thick pellets. A pellet this
thin is quite fragile and difficult to handle. To address this concern, I developed a
method of reinforcing the thin pellet with sheets of Kapton.

Kapton is a commercially available plastic manufactured by DuPont. T obtained
a quantity of 8 ym thick Kapton sheet. Kapton is a common material for x-ray
applications as it has no sulfur of other heavy elements in it. It has a high tensile
strength and it decomposes at an extremely high temperature. In one test, I heated
a piece of Kapton to ~825K in atmosphere. It turned from its normal orange color
to a dull black, but it retained its shape and much of its tensile strength. Its tensile
strength and heat resistance made it an ideal choice for reinforcing my thin samples.

Material for the PbTiO3 and EuTiO3 experiments was provided to me by Fatih
Dogan of the University of Washington Department of Material Science and Engi-
neering. These were prepared from an aqueous solution of nitrates of titanium and
either lead or europium. A molecular mixture of titanium and lead or europium was
coprecipitated from the solution by alteration of pH with ammonium. The mixtures
were freeze dried then calcined in air for several hours at 750° C. The PbTiO5; was
prepared slightly lead rich to accommodate the high vapor pressure of the lead. The
EuTiO3 was further reduced in a hydrogen atmosphere from its initial Eus TioO7 form.
Both materials were found to agree with established powder x-ray diffraction patterns
for those materials. The particles were checked by optical and electron microscope
and were found to have an average size less than 1 ym.

An absorption length at the low energy edges in these three material is < 5 ym.
This is not very large with respect to the particle size, so it is critical that the
powders be well dispersed within the graphite. I placed an appropriate quantity
of the powder mixture between two pieces of the thin Kapton and dry pressed this
“sandwich.” Upon removal from the die, the edges of the sandwiches tend to fray
and some material is lost from the edges, but a large useful region in the middle of
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the sample usually remains. By moving the sample relative to the incident x-ray
beam and observing the signal in the I chamber, a uniform region of the sample can
be found. Since the Kapton has sufficient heat resistance, samples prepared in this

manner are suitable for high temperature measurements.

3.2.2  Single Crystal Samples for Fluorescence
PbTiOs

My PbTiOj; single crystal [74] is an irregularly shaped wafer about 300 ym thick.
It was examined under crossed polarizers and at 200x magnification and a mostly
single domain region of approximate dimensions 700 ym x 700 pum was found. The
crystal was placed behind a copper mask exposing the single domain region to the
500 gm x 500 um beam used in the experiment. The content of 90° domains in the
illuminated region was less than 5 percent. As the penetration depth into the sample
was several microns, the measurement was dominated by the bulk, and surface effects
were negligible.

The single crystal XANES data were taken in the fluorescence geometry. The
sample was oriented such that the region around the absorption edge showed no
evidence of Bragg peaks, which would give spurious structure to the XANES signals.
As the energy of the x-rays and the orientation of the sample change, different peaks
diffract into the solid angle subtended by the Ir detector. I monitored each scan to
verify that there was no evidence of contamination by Bragg peaks. Whenever Bragg
peaks appeared in the data, perhaps due to the thermal expansion of the sample
holder, T rotated the sample by a fraction of a degree and repeated the scan. Usually
this small adjustment was sufficient to remove Bragg peaks from the XANES region
of the data.

The crystallographic ¢ axis was parallel to the surface of the crystal facing the
beam. I could therefore orient the ¢ axis perpendicularly to the x-ray polarization
vector €, which is transverse to the direction of propagation of the beam. I could not,
however, orient the sample with ¢ parallel to €. Instead we measured the spectrum
with the samples in three orientation with three different values of o = cos™!(&-¢) as
depicted in Fig. 3.1. The sample was measured at approximately a € {17°,30°, 45°}.
We left the sample in its final position, about 45°, for the high temperature measure-
ments. To extract u.(FE), the portion of the signal due to € || ¢, the exact value of
the final o was required.

Using the measurement of the signal due to € || @, p,(F), and the three initial
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values of a, I extracted a trial function for u. from each of the three orientations.
I averaged these three trial functions, then used the average p. and pu, as fitting
functions to determine the best fit values for the three a’s. I then used these three
new values for the a’s to determine a new trial .. I iterated this process until both
the trial function and the values of o stopped changing. In this way I determined
that a = 50.6(6)° for all of the high temperature measurements. Given this value of
a, I extracted . from each of the high temperature data sets by

pa(E) — 1o (E) sin® ()
cos?(a)

He(E) = (3.10)
To test the success of this method, I compare the polycrystalline PbTiO3; data at
three temperatures to the weighted sum %(Mc + 24,) in Fig. 3.4. The agreement is
quite good. The small differences in area indicate a source of systematic uncertainty
in the analysis of the single crystal data in Sec. 7.4.4.

As the sample heated up and the sample holder equilibrated at each temperature,
Bragg peaks occasionally wandered into the edge region of the data. The sorts of
adjustments necessary to remove them were about the same size as the uncertainty

in a.

BaTi03

From a large single crystal [75] a piece of dimensions 4mm x 2mm X 1.5mm was
cut [76]. This piece was etched [77] in phosphoric acid at 160° C for about an hour
to release surface strain, and one of the 4mm x 2 mm faces was polished using fine
aluminum oxide grit. The crystal was poled under a 1kV/cm electric field, thus
producing a large single crystal with a surface mostly free of 90° domains. By ex-
amining the BaTiO3 sample under crossed polarizers and at 200x magnification, we
found that the polished surface and the bulk of the crystal were a single domain. To
assure that the surface of the crystal maintained the same polarization as the bulk,
the sample was kept under a 600 V/cm electric field during both storage and data
collection. The polished surface was used for data collection. This additional care
in sample preparation over that observed for the PhTiO3 sample seemed warranted
due to the softness of the BaTiO3 domain structure. Any small inconsistencies of the
preparation method should manifest at the surface. Since the penetration depth of
the x-rays at the titanium K edge energy 4966 eV is several microns, the XANES
measurement is dominated by the bulk and any small 90° or 180° domains remaining
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Figure 3.4: Comparison of the polycrystalline and PbTiO3 data and the weighted
sum of the single crystal data in the XANES region. The single crystal data is the
sum of %/LC and %,ua. The single crystal data was actually obtained at 300, 568, and
707 K as described in Sec. 7.4.4. The close agreement of the spectra shows the success
of the method of separating . from p,. The peak in the dashed box is the subject

of Ch. 7.



39

on the surface would have negligible impact on the measurement.

We did not have the temperature apparatus available to control the direction of
poling at other than room temperature, so no temperature dependent XANES on
single crystal BaTiOs3 is presented in this thesis. Since the sample was not inside of
the furnace or the Displex, it was a simple matter to align it by eye to a = 45(3)°.
The spectra with € parallel to the aa plane were measured directly. The spectra for
€ || ¢ were found by using Eq. (3.10).



Chapter 4

EXAFS MEASUREMENTS ON PbTiOg

In light of the findings that BaTiOs and KNbOs; are very much more
complicated in their dynamic behavior than was envisaged in the original
concept of the displacement ferroelectric, it is particularly interesting to
discover that the ferroelectric perovskite PbTi103 behaves more closely in
the expected manner. In fact it appears to be a textbook example of a

displacive ferroelectric transition.

M.E. Lines and A.M. Glass
in Ref. [78], p. 248

4.1 The Phase Transition of PbTiO3

The recent discovery of order—disorder behavior in several oxide perovskites which
were thought to be of the displacive type, including KTag 91 Nbg g9O3 [13-15], NaTaOs
[16], Nagg2Ko.1sTaO3 [16] and PbZrO3 [17], motivated the investigation of the local
structure of PbTiOg3, the textbook example of a displacive ferroelectric. In this chapter
I present EXAFS measurements which demonstrate that PbTiO3 also has an essen-
tial order—disorder component in its ferroelectric to paraelectric transition. Detailed
understanding of the material is important not only because it is a well studied ex-
ample of a ferroelectric, but also because of its considerable practical interest. It is
the end member of solid solutions with PbZrO3, BaTiO3, SrTiO3, and others having
applications as electrochemical transducers, electromechanical transducers, dielectric
devices, and pyroelectric devices.

In its low temperature phase. PbTiOj is of tetragonal symmetry and is ferroelec-
tric. At 763 K it undergoes a transition to a cubic and paraelectric state. PbTiOj3
has the soft mode [2] and large dielectric coefficient [6] characteristic of a displacive
ferroelectric. Its crystallographic structure shows a clear transition [3,79-81] from
tetragonal to cubic symmetry at 763 K which is weakly first order. The temperature
dependence of its Raman spectrum [82] shows the transition from tetragonal to cu-
bic symmetry. This soft mode has been investigated as a function of temperature
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[2,82] and pressure [83]. The soft mode frequency is underdamped and decreases
as the transition temperature is approached from above. This soft mode frequency,
however, never reaches 0, instead it saturates at 55cm~! [82].

Table 4.1: The structures of the phases of PbTiO3 and their transition temperatures.
The data in this table is from Ref. [84].

tetragonal — cubic
(P4mm) 763K (Pm3m)

In recent years considerable evidence has appeared pointing to the possibility of
an order—disorder component to the structure of PbTiO3 through its phase transi-
tion. Near the transition temperature, a large central peak is observed in the Raman
spectrum [85, 86]. Its presence, along with a soft mode frequency that does not van-
ish at the phase transition, is evidence of a disordering process on both sides of the
phase transition. The same authors point out that the dielectric constant is larger
than that predicted by the Lydane—Sachs—Teller relation for a displacive transition,
indicating the presence of a further mechanism in the phase transition. Over the
years a variety of techniques have shown further evidence for order—disorder behavior
in PbTi0O3, including refractive index measurements [87], Perturbed Angular Correla-
tion Spectroscopy [88,89], and single—crystal neutron diffraction [90]. In the neutron
diffraction study, the authors fit their diffraction data with a model allowing for dis-
ordering of the lead atoms among six sites displaced along the Cartesian directions
from the average lead position. However the authors state that their measurement
“indicates the possibility of Ti also being disordered above T.” but that “multi-site
disorder cannot be completely distinguished from thermal anharmonicity” in their
measurements.

EXAFS is an ideal tool for investigating the phase transition in PbTiO3. EXAFS
possesses considerably higher spatial resolution [91] than diffraction in measurements
of local structure. By examining the local structure of PbTiO3 with EXAFS, I can
examine the local structure through the phase transition for the possibility of order—
disorder behavior.

Investigation of the temperature dependence of the local structure in PbTiO;
seems particularly important in light of recent attempts [92-95] to compute its struc-
ture and phase transitions from first principles. Such work requires detailed knowl-
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edge of the true ground state structure of a material as well as its local structure in
all of its crystallographic phases.

One recent measurement [96] of the lattice parameters using x-ray and optical
techniques suggested the presence of tetragonal to orthorhombic transition at about
183 K with an ¢ ratio of less than 1.0002. Subsequent attempts to reproduce this
result have met with mixed success and there remains some debate in the literature
about the validity of this third structural phase. The size of the splitting reported in
that study is quite small and is below the resolution of EXAFS. One of the long stand-
ing puzzles about PbTiO3 and BaTiOj is why BaTiO3 undergoes changes of symmetry
with raising temperature from rhombohedral to orthorhombic to tetragonal to cubic,
while PbTiOj3 only undergoes the tetragonal to cubic change of symmetry. In this
chapter and in Ch. 5, T will show that the reason is due to different local distor-
tions in the two materials. BaTiO3 possesses a rhombohedral local distortion while
PbTiOj3 possesses a tetragonal local distortion. The possibility of a low temperature
orthorhombic phase may indicate the presence of an eight site disordering mechanism
in PbTiO3. The XANES measurements presented and discussed in Sec. 7.3 preclude
the possibility of a rhombohedral local distortion in PbTiO3, thus I will not consider
this possibility in the EXAFS analysis presented here.

I wish to make one final note about the literature on the crystal structure of
PbTiO3. In the paper by Kuprianov et al. [97], the authors observe a stronger
temperature dependence of the titanium displacement, dr; in Table 4.4, then do the
authors of Refs. [3,84,90]. Kuprianov et al. fix the values of dp, and dp, to be the
same in their refinements. Because of this artificial constraint in their refinement, I
choose not to use their results for comparison to my EXAFS results.

4.2 PbTiO3; EXAFS Measurements

I prepared samples for titanium K edge measurements in the manner described in
Sec. 3.2. Data were collected in transmission at 300, 450, 600, 700, 730, and 800 K.
Because of severe electrical problems with the furnace used at that experimental run
at NSLS, only one data point in the cubic phase was collected.! For two publications
[18,19] on PbTiO;, data taken in fluorescence on a sintered pellet of PbTiO; was
analyzed. For those papers, I only analyzed the first shell signal. In this chapter
I present a more complete analysis of the data including multiple scattering paths

' Tt was the experience on this run that motivated designing the furnace described in Sec. 3.1.5.
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out to the fourth shell at low temperatures and the third shell at elevated tempera-
tures. I use the fluorescence data at 10, 3002, 790, 850, and 900 K to supplement the
temperature points obtained in transmission. Although the two data sets show ex-
cellent systematic agreement for fitting parameters affecting the phase in the EXAFS
equation Eq. (2.10), including those effecting bond lengths, there is considerable dis-
tortion to the amplitudes of the fluorescence data. The effect of this distortion on
my measurements will be discussed below. Still, consideration of the fluorescence
data allows me to study the temperature dependence of the local structure in a broad
temperature range between 10 K and 900 K. An example spectrum at 300 K is shown
in Fig. 4.1.

=
a
T

Normalized absorption
o

0.0 ‘ ‘
4800 5000 5200 5400
Energy (eVv)

Figure 4.1: Titanium K edge absorption spectrum in PbTiO3 (solid line) and the
background function found by AUTOBK [54] (dashed line). The region in the box is
the near edge feature discussed in Ch. 7.

Background subtractions were performed with AUTOBK using the technique de-
scribed in Sec. 2.2. The isolated (k) are shown in Fig. 4.2 at various temperatures.
The background removal parameters used in AUTOBK to produce the x(k) spectra
are given in Table 4.2.

To test the order—disorder model with these data, I created theoretical fitting
standards using FEFF6 and the tetragonal crystal structure [3] of PbTiOz at 300 K.

2 In Figs. 4.6 — 4.9, the fluorescence result at 300 K is plotted at 290 K for clarity.
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Figure 4.2: The x(k) spectra for PbTiO;3 at several temperatures. The phase tran-
sition is at 763 K. The data are the average of two or three scans taken at each
temperature and were weighted by k2. The dashed lines indicate the boundaries of
the data range used in the Fourier transforms for the fits. The glitch at about 9.3 A~
in some data sets was simply ignored as it is narrow and contributed systematic noise
only at high frequency.

Table 4.2: Background removal parameters used in AUTOBK for the PbTiO3 data.
The value of E, was fixed in each of the background removals. This is the energy
of the peak inside the dashed box in Fig. 4.1. [0 — Ry, is the region over which
the non—structural Fourier components are optimized in the background removal.
[Riry — Ris] is the data range over which the theory is scaled in the optimization.
The default values in AUTOBK for the k—weight (1) and Hanning window sill widths
(0) were used.

‘ edge EO kmm kmaz Rbkg Rlst ‘
| Ti K 49660 2 endofdata 1 2 |
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The contributions from these paths as calculated by FEFF6 were varied according
to Eq. (2.10). The values for N were set as indicated by the rhombohedral local
symmetry as shown in Table 4.3. To determine the path lengths R of Eq. (2.10),
I used the five structure parameters shown in Table 4.4 as possible fitting variables
and from these determined R for each path. This fitting model is sufficiently robust
to test the differences between the tetragonal and cubic local structures. If o1y, do,,
and dp, relax to zero and the axis lengths become equal then the cubic local struc-
ture is obtained. The remaining fitting parameters considered were o2 for each of
the single scattering (SS) paths, phase corrections parameterized as E, variations for
each species of backscattering atom, and an amplitude correction for the titanium
backscatterers. To reduce the number of fitting parameters, I used the values for
the Einstein temperatures of the short and long titanium-lead bonds found in Ref.
[18]. These are 227(20) K and 204(20) K respectively. The parameters for all multiple
scattering (MS) paths considered in the fits were determined from this set of fitting
variables without introducing new parameters. The fitting ranges, information con-
tent, and statistical parameters of these fits are shown in Table 4.5. The range in R
space included SS and MS paths out to the fourth coordination shell for the lower
temperatures and the third shell at higher temperatures. At the distance of the third
shell titanium atoms are several double and triple scattering paths which contribute
strongly to the EXAFS and which involve the first shell oxygens and the third shell
titanium atoms. These were the only MS paths considered in the fits. The o?’s for
these MS paths were set as described in Sec. A.1.1.

Table 4.3: Multiplicities and lengths of the various near neighbor bond lengths in
PbTiO;3 for the local symmetries of the tetragonal and cubic phases as predicted
by the displacive model. In the order—disorder model the tetragonal local structure
persists in all phases. All distances are in Angstroms and were determined from the
crystallographic data in Ref. [84] at 300 K and 765 K.

local
symmetry Ti—-O Ti-Pb Ti-Ti
1 x 1.767
4 x 3.361 4 x 3.902
tetragonal 4 x 1.980
1 % 2.389 4 x 3.556 2 x 4.156
cubic 6 x 1.985 8 x 3.438 6 x 3.970
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Table 4.4: Structural fitting parameters used in the fits to the titanium K edge data
using the tetragonal local structure. The initial values [3] are for the 300 K crystal
structure. The length of the ¢ axis was determined from the length of a by forcing the
volume of the unit cell to remain constant. The value of dp, was fixed as indicated
in the text.

‘ param. description initial value ‘
a measured the a and b lattice constant 3.905 A
c set the ¢ lattice constant 4.156 A
O measured the tetragonal displacement of the tita- 0.0390
1 .

nium atom

the tetragonal displacement of the axial
do, measured oxygen atom 0.1138
the tetragonal displacement of the planar 0.1169

00, set oxygen atom

The structural parameters shown in Table 4.4 were used as fitting parameters
in my analysis using FEFFIT. I used the symmetries of the tetragonal structure to
compute path lengths for use in Eq. (2.10). The input files for FEFFIT that I used
to relate the structural parameters to the path lengths were quite complicated and
are discussed in detail in Sec. A.1. The significant contributions from MS paths
overlapped the titanium third shell SS paths. Due to the tetragonal distortions, the
MS paths through the planar oxygen atoms deviate from collinearity by 9.41° in the
low temperature crystallographic structure. The effect of changing this angle was
included in the fits by the method described in Sec. A.1.2.

Fits to the data at several temperatures using the tetragonal model are shown in
Figs. 4.3 — 4.5. This fitting model gave good agreement to the data throughout the
temperature range with physically consistent results for the fitting parameters.

I show in Ch. 6 from my analysis of EuTiO3, a structurally simple material, that
S2 = 0.95(0.15) for the titanium K edge. SZ is a chemically transferable quantity,
thus I used this value in my fits to the PbTiO; data. This is somewhat larger than
the value I found fitting only the first shell of the fluorescence PbTiO3 data in Refs.
[18] and [19].

The temperature dependence of the unit cell lengths as measured by x-ray diffrac-
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Table 4.5: Fourier transform ranges (Ak), fitting ranges (AR), number of indepen-
dent points (Ny), the number of parameters used in the fits (P), number of degrees
of freedom (v), the measurement uncertainty in R-space (,), reduced chi-square
(x2), and R—factor (fractional misfit) for the fits to the rhombohedral structure for
BaTiOs;. The 8 free variables in these fits were d,, do,, dti, 02 for the titanium-—
oxygen, titanium-titanium, and titanium-4'" shell oxygen paths, and an Ej for the
oxygen and titanium backscatterers. The other Fy’s was set as described in the text.
x (k) was weighted by k? for all Fourier transforms. The measurement uncertainty is
obtained by FEFFIT as described in Sec. 2.3. The large value of o at 450 K accounts
for the small x? but large R—factor at that temperature.

| temp. Ak AR N, P v 3, 2 R |
10K [3,10] [1.1,42] 157 8 7.7 0.0088 429  0.0043
200K [3,10] [1.1,4.2] 157 8 7.7 0.0078 71.7  0.0127
300K [3,10] [1.1,4.2] 157 8 7.7 0.0247 50  0.0073
450K [3,10] [1.1,4.2] 157 8 7.7 0.0439 50  0.0222
600K [3,10] [1.1,42] 15.7 8 7.7 0.0120 9.0  0.0042
700K [3,8.5] [1.1,4.2] 12.7 8 4.7 0.0029 154.9  0.0038
730K [3,8.5] [1.1,4.2] 12.7 8 4.7 0.0029 170.5  0.0041
790K [3,8.5] [1.1,42] 12.7 8 4.7 0.0056 158.1  0.0235
800K [3,8.5] [1.1,4.2] 12.7 8 4.7 0.0034 163.0  0.0071
850K [3,8.5] [1.1,4.2] 12.7 8 4.7 0.0037 121.3  0.0055
900K [3,8.5] [1.1,4.2] 12.7 8 4.7 0.0042 132.3  0.0048
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tion is shown in Fig. 4.6. The central line in the figure is the cube root of the volume
of the unit cell. Within about 0.5 percent, the volume of the unit cell does not change
within the ferroelectric phase, while it apparently has a discontinuity at the phase
transition. The size of this variation on the axis lengths is near the limit of my ability
to resolve changes in bond length. T can thus reduce the number of parameters in my
fits by one by taking the volume of the unit cell to be a constant. Thus I allow the
length of the a axis to change and determine the the length of the ¢ axis from that
and the constant volume, taken to be 63.375 A% from the values of a and ¢ used in the
FEFF calculation. How this is done in FEFFIT is shown in Fig. A.2. This introduces an
error in the determination of the phase of the same order as the level of uncertainty
reported by FEFFIT in determining the bond and axis lengths and is much smaller
than the differences between the tetragonal and cubic local structures.

As indicated in Table 4.4, the value of dp, was fixed in the fits presented here. In
an initial round of fits, I allowed this parameter to vary. In those fits the temperature
dependence was such that the values of dp, and d1; became close in value at elevated
temperature. From this result I concluded that the titanium atom relaxed into the
plane of the Oy oxygen atoms above the crystallographic phase transition. I then
used the structural parameters obtained by these fits in which 0o, was allowed to vary
as the input to a calculation of the XANES spectrum at 900 K using the computer
program discussed in Chs. 8 and 9. As I show in detail in Sec. 7.4, the calculation using
this structure was unsatisfactory. The XANES data clearly show that the titanium
atom does not reside in the plane of the O, atoms even at the highest temperatures.
To place the constraint on my EXAFS fits that the titanium atom should not reside
in the O, plane, I fixed dg, to its low temperature value. The values for x2 obtained
in the presence of this constraint are consistently smaller than those from the fits in
which 0o, was allowed to vary. Furthermore, as shown in Sec. 7.4, the results of the
XANES calculation were more consistent with the measured spectrum at 900 K.

As mentioned above, the 0?’s of the two titanium-lead bonds were determined
from the Einstein temperatures reported in Ref. [18]. The other oxygen and titanium
bond lengths were each assigned 0*’s which were varied in the fits. Each backscatterer
was also assigned a phase correction in the form of an Ej. These six parameters as
well as the three structural parameters indicated as “measured” in Table 4.4 were
the fitting parameters considered in the problem. An amplitude correction to the
titanium backscatterer was not necessary in this case.

The Ej corrections are non-structural fitting parameters which are required to
correct for inaccuracies in the FEFF calculation. Due to the approximations used by
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FEFF, particularly the use of neutral atomic spheres in the overlapped potential and
the use of spherically symmetric scattering potentials, significant error in amplitude
and phase of the fitting standards may be introduced. These errors will be particularly
large for materials with large anisotropy or with significant transfer of charge between
atoms. PbTiOj is an example both of an anisotropic material and of a material with
significant charge transfer. As shown in Ref. [98], corrections of this sort are essential
for accurately measuring the temperature dependence of structural parameters in
materials effected by anisotropy and/or charge transfer.

Taken together this set of nine fitting variables was rather ill-constrained. When
all the fitting parameters were allowed to float, there was large scatter in the Fj
values for lead and titanium and the difference between the oxygen and lead Ej’s is
unphysically large. Assuming that, for the titanium F, this was scatter around the
value needed to correctly account for the errors introduced into the FEFF calculation,
I used the mean of the measured values as shown in Table 4.6. The large standard
deviations are due mostly to one or two outliers. Fixing this parameter yielded
physically consistent results for the structural parameters. Of course, fixing these
parameters in any way introduces a source of systematic error into the fits. Most of
the uncertainty in the structural fitting parameters is due to their correlation with
the phase corrections. By changing the set values of the phase corrections for the
lead and titanium backscatterers by several volts, I can systematically raise or lower
the values of the structural parameters in the fit within their error bars. Since fixing
these phase corrections to slightly different values does not qualitatively change the
results and changes them quantitatively only within their error bars, I feel justified
in setting them to the values shown in Table 4.6.

Table 4.6: Ey corrections in the PbTiOj fits. The values are the averages of the best
fit values for these two parameters at each temperature and the uncertainties are the
standard deviations. FEj, for the oxygen backscatterers was a variable parameter in
the fit. Note that the scatter in the titanium and lead Ey’s is quite large.

Oxygen Lead Titanium
10.1(1.0)eV —145(6.0)eV 7.4(4.1)eV

In Ref. [98], a simple argument is used to relate a relative shift in E, of 5eV to
the transfer of one full electron between two atoms. The results shown in Table 4.6
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suggest the transfer of about 4 electrons from the titanium to the lead atoms. While
PbTiOj is known to be highly polarizable and that there must be significant overlap
of lead 6s electrons with titanium 3d electrons [92], the transfer of 4 electrons is
unreasonable. Thus I hesitate to ascribe physical meaning to these large values of
E,. However, I needed this correction to obtain good fits and reasonable temperature
behavior for the structural parameters.

Figure 4.3: Fit to the Ti K edge data in PbTiO3 at 10 K. The magnitude of the
complex Fourier transform of x(k) is shown. The diamonds (o) are the data and the
line is the fit.

The results for the three structural fitting parameters are shown in Table 4.7. The
a axis increases somewhat with temperature. The displacement of the titanium atom
Or; is essentially constant with temperature. The displacement of the axial oxygen
do, decreases with temperature.

The effects of these parameters are shown in the temperature dependence of vari-
ous structural features of PbTiOj3 in Figs. 4.6 — 4.9. In all these figures, the significant
differences between the local structure measured by EXAFS and the average struc-
ture measured by diffraction are evident. There is a displacive component to the
temperature behavior of the local structure. Near the phase transition temperature
, an order—disorder mechanism begins to dominate the local structure as the split in
the lengths of cell axes persists into the high temperature phase.

Fig. 4.6 shows the temperature dependence of the unit cell axes. In the tetragonal
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Figure 4.4: Fit to the Ti K edge data in PbTiO3 at 300 K. The magnitude of the
complex Fourier transform of y (k) is shown. The diamonds (¢) are the data and the
line is the fit.

Figure 4.5: Fit to the Ti K edge data in PbTiO3 at 850 K. The magnitude of the
complex Fourier transform of x(k) is shown. The diamonds (¢) are the data and the
line is the fit.
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phase, the measurement of the local axis lengths show less temperature dependence
than the diffraction measurement and no discontinuity at 7.. This shows that the
tetragonal distortion in the local structure persists into the high temperature phase.
This can be explained by an order—disorder mechanism. As T, is approached from
below, the direction of the tetragonal distortion begins to disorder. At T, long range
correlations are lost. Below T, some number of the local distortions are rotated by
90°, resulting in average unit cell axes which are shorter than those of the local
structure. In the high temperature phase the local distortions are fully disordered
and the average structure is cubic.

Not only does the tetragonal local distortion persist into the high temperature
phase, so do the distortions of the oxygen octahedron. As shown in Table 4.7 each
of d7; and 0o, persist into the high temperature phase outside of their uncertainties.
The result is that the split in titanium—oxygen and titanium-lead bond lengths also
persist into into that phase. These splittings are shown in Figs. 4.7 and 4.8.

The displacement of the titanium atom from the midpoint of the axial oxygens is
shown in Fig. 4.9. This distortion parameter is computed by

d = Tlong _2 Tshort (41)

where 74,y and 74,4 are the long and short bonds in Fig. 4.7. d is affected by the
temperature dependence of both dp, and d,. d will be used in the interpretation of
the PbTiO3 XANES data in Ch. 7.

This interpretation of the data is consistent with the previous results on PbTiO;
[18,19]. Values of structural parameters common between this analysis and the anal-
ysis of the lead edge, such as the titanium-lead bond lengths as shown in Fig. 4.8,

are consistent within their uncertainties.

As T stated previously, the fluorescence data that I used to supplement the data
taken in transmission was distorted in amplitude. The distortion is odd. Using the
same SZ as for the transmission data and a self-absorption correction of 1.087 ob-
tained as described in Sec. B.2.4, T obtain values for o2 for the titanium-oxygen and
titanium-titanium bonds that are systematically too small. By fitting an Einstein
temperature to the 02’s of these two bonds using only the transmission data, I ob-
tain 582(20) K for the titanium-oxygen bond and 285(5) K for the titanium—titanium
bond. For the fluorescence data I obtain values of 0% which are consistently 3-
5x 1073 A2 smaller than those calculated from the Einstein temperatures. I conclude
that T am incorrectly estimating the self-absorption correction or that there is some
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other source of systematic error in the fluorescence data. That the measurements of
terms affecting the phase (i.e. 0R and Fy terms) in the fluorescence data are con-
sistent with similar measurements at similar temperatures in the transmission data
suggests that the distortion to the data is restricted to the amplitude and that I may
trust the fluorescence data points in Figs. 4.6 — 4.9 as those figures plot quantities
which depend upon the phase of the data.

Table 4.7: Temperature dependence of the structural fitting parameters in the PbTiO3
fits using the tetragonal local structure.

‘ temp. (Sa 601 6Ti ‘
initial 0.0 0.1138 0.0390
10 0.003(3) 0.130(3) 0.046(1)
300 0.009(3) 0.134(5) 0.052(3)
450 0.013(6) 0.132(12) 0.056(8)
600 0.016(3) 0.134(5) 0.054(4)
700 0.020(8) 0.118(9) 0.052(7)
730 0.022(9) 0.116(10) 0.051(8)
790 0.021(14) 0.110(19) 0.042(14)
800 0.026(10) 0.120(15) 0.054(13)
850 0.029(8) 0.115(11) 0.046(9)
900 0.028(9) 0.108(12) 0.046(11)

The success of the tetragonal fitting model at all temperatures is compelling ev-
idence that PbTiO3 behaves according to an order—disorder model. To confirm that
the cubic local structure is inconsistent with the data above 7., I use the method
described in Sec. A.3 to model the cubic local structure. I fit the 800 K transmission
data and 790, 850, and 900 K fluorescence data using Sg = 0.9 and allowed eight
variables in the fits. These were a lattice expansion coefficient, an FEj shift for each
of three atom types, and o2 for each of the first four coordination shells.

Fixing the lattice constant to 3.974 A, the value given by the crystallography [90],
yields the fit shown in Fig. 4.10 for the 850 K data. This is a significantly worse
fit. The first shell is substantially broader and x? = 511.6 which is considerably
larger than the y? reported in Table 4.5 for the tetragonal local structure at that
temperature. Also the value of o2 for the titanium-oxygen bond is 0.061(36) A2 at
850 K as compared to the value of 0.011 A? obtained at that temperature from the
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Figure 4.6: Axis lengths for PbTiO; as measured by x-ray diffraction (+) [90] and
by EXAFS (o). The lowest temperature diffraction data point is taken from Ref. [3].
The middle line is the cube root of the volume as measured by the diffraction data.
The line in the diffraction data is a guide to the eye. The vertical line indicates the
transition temperature 763 K.



N
S
e

N
N\
|

NV]
[
L

long Ti-O bond

I T

middle Ti-O bond

33

Bond length (A)

1.8 | -
C W F g E
short Ti-O bond
1.6 |- -
| | | |
0 200 400 600 800

Temperature (K)

1000

%)

Figure 4.7: Titanium-oxygen bond lengths for PbTiO3 as measured by x-ray diffrac-
tion (+) [90] and by EXAFS (o). The lowest temperature diffraction data point is
taken from Ref. [3]. The line in the diffraction data is a guide to the eye. The vertical
line indicates the transition temperature 763 K.
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Figure 4.8: Titanium-lead bond lengths for PbTiO3 as measured by x-ray diffraction
(+) [90] and by EXAFS (o). The lowest temperature diffraction data point is taken
from Ref. [3]. The line in the diffraction data is a guide to the eye. The additional
lines in the cubic phase are the largest and smallest possible titanium-lead bond
lengths given the lead distortion used in the fitting model in Ref. [90]. The vertical
line indicates the transition temperature 763 K.
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Figure 4.9: Distortion parameter d from Eq. (4.1) in PbTiO3 as measured by x-ray
diffraction (+) [90] and by EXAFS (o). The lowest temperature diffraction data point
is taken from Ref. [3]. The line in the diffraction data is a guide to the eye. The
vertical line indicates the transition temperature 763 K.
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measured einstein temperature using the tetragonal model. This enhanced value
is needed in the cubic model fit to compensate for the lack of structural disorder
introduced by the cubic fitting model. Using the formulas of Ref. [51] to compute

2 using the low temperature

the structural contribution to the titanium—oxygen o
crystallographic structure yields a value of 0.029 A2, This sharp rise in o2 using the
cubic fitting model is further evidence that the cubic model is inadequate.

Allowing the lattice expansion coefficient to vary in the cubic model fits improves
the fits but gives a best-fit lattice constant 3.922(41) A which is to small compared to
diffraction measurements[90]. Thus I am forced to reject the possibility of a transition
into a phase of local cubic symmetry. I conclude that the local structure in PbTiO5

is dominated by an order—disorder mechanism.

Figure 4.10: Fit to the Ti K edge data in PbTiO3 at 850 K using the cubic fitting
model. The magnitude of the complex Fourier transform of x(k) is shown. The
diamonds (o) are the data and the line is the fit. Note the broadening of the first
peak due to neglecting the structural disorder.



Chapter 5

EXAFS MEASUREMENTS ON BaTiOj

In Ch. 4 T showed that the local distortion of the titanium atom in PbTiO; is in
a tetragonal direction and that this distortion persists into the cubic phase. From
this local structural information, I determined that the mechanism of the tetragonal
to cubic phase transition has both order—disorder and displacive components. I now
turn to a second ferroelectric perovskite, BaTiOj.

5.1 The Phase Transitions of BaTiO;

Because BaTiO3 has a relatively simple crystal structure and a rich ferroelectric and
structural phase diagram, it has been one of the most exhaustively studied ferro-
electric materials since its discovery as a ferroelectric in 1946 [99]. Despite years of
experimental and theoretical attention, the question of whether the phase transitions
of BaTiO3 are predominantly of the displacive or order—disorder type remains open.
In this chapter, I present Extended X-ray Absorption Fine Structure (EXAFS) data
showing that the phase transitions of BaTiOj3 are predominantly of the order—disorder
type.

Because of its high Curie-Weiss constant and zone—centered soft mode [5], BaTiO3
has long been considered an example of a material whose structural transitions are
of the displacive type. In low temperature phases of a displacive crystal some or all
of the constituent atoms are displaced from sites of point centrosymmetry. These
displacements are of the same symmetry as the macroscopic order parameter. In the
case of BaTiOs3, the ferroelectric phase transitions involve rotations of the macro-
scopic polarization. In the lowest temperature, rhombohedral phase the polarization
is parallel to a (111) crystal axis. Upon heating BaTiOs; undergoes transitions to
orthorhombic, tetragonal, and finally cubic phases, wherein the macroscopic polar-
ization aligns parallel to a orthorhombic (011) axis then to a tetragonal (001) axis
before vanishing in the cubic phase. These transitions are summarized in Table 5.1.

In Cochran’s [5] displacive model, the atomic displacements are driven by soften-
ings of the appropriate phonon modes as the transition temperature is approached
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Table 5.1: The structures of the different phases of BaTiO3 and their transition
temperatures. The data in this table is from Ref. [4].

rhombohedral = orthorhombic =—  tetragonal — cubic
(R3m) 183K  (Amm2) 278K (P4mm) 393K (Pm3m)

from above. The mode becomes unstable as its frequency goes through zero, pro-
ducing the displacement of the lower temperature and lower symmetry phase. This
model qualitatively explains the structural and ferroelectric phase transitions, the
Raman spectrum [1], and much of the thermodynamics of the BaTiO3 system. The
soft mode frequency, however, does not vanish at the phase transition temperature,
indicating a fundamental shortcoming of this purely displacive model.

In 1968, Comes et al. [100,101] published photographs of diffuse scattering sheets
between the Bragg peaks in three of the four phases of KNbOj, which is isostructural
to BaTiO3; and undergoes the same sequence of phase transitions. These sheets
could not be explained by Cochran’s displacive model. They showed that qualitative
agreement with their observations could be obtained by application of an order—
disorder model first proposed for BaTiO; two years earlier by Bersuker [102]. In
Refs. [100] and [101], Comes et al. state that they interpret their measurements of
BaTiO; with this same order—disorder mechanism.

An order—disorder crystal is characterized by local atomic configurations which
do not necessarily share symmetry elements with the macroscopic order parameter.
From calculations of the local adiabatic potential, Bersuker suggested that the tita-
nium atom sits in one of eight potential minima which are displaced from the cell
center in the eight (111) directions, as shown in Refs. [100] and [102]. In the lowest
temperature phase, there is long range correlation in all three Cartesian directions
between titanium atoms in adjacent unit cells. Thus, in the rhombohedral phase, all
the titanium atoms are displaced in the same (111) direction. At each of the three
phase transition temperatures, correlation is lost in one of the three directions. This
results in a disordering of the titanium atoms among the (111) directions. In the
orthorhombic phase, the titanium atoms occupy one of two (111) positions such that
the displacements from cell to cell are correlated over long range in two Cartesian
directions and uncorrelated in the third. At the transition to the tetragonal phase,
the correlations are lost in a second direction, thus four of the (111) positions are
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equally occupied by the titanium atoms. Finally in the cubic phase, correlations in
the remaining direction vanish and all eight (111) sites are randomly occupied.

In all phases the local displacements are rhombohedral and these rhombohedral
displacements disorder such that their average over long length scales gives the ob-
served crystallographic structure. Whenever disorder is present, the symmetry of the
macroscopic order parameter, in this case the polarization, may be different from the
symmetry of the local displacements. The Bragg peaks observed in the experiment
by Comes et al. arise from the average structure and the diffuse scattering between
the peaks indicate that disorder is present. Comes et al. interpreted the existence of
the planes of diffuse scattering to indicate that the local rhombohedral displacements
of the titanium atoms have long correlation lengths in directions perpendicular to the
planes.

This order—disorder model is not unique in providing qualitative agreement with
the diffuse sheets measured by Comes et al. In 1969 Hiiller [103] showed that a
displacive model allowing for correlated motions of the titanium atoms also gave
qualitative agreement with the observed sheets. As Hiiller pointed out in his paper,
a direct test of these competing models was lacking at the time. This chapter, along
with Ch. 7, provides this direct test.

Performing a direct test of the local atomic configurations in the various phases
of BaTiO3 is the topic of this chapter. Although the model of soft phonon modes and
displacive structural transitions has enjoyed success qualitatively explaining many of
the macroscopic and thermodynamic properties of BaTiOj3, there are quantitative
discrepancies and a number of measurements in the literature which are not well ex-
plained by a displacive model. These include measurements of infrared reflectivity [7],
cubic phase x-ray diffraction [8], electron spin resonance [9], and impulsive stimulated
Raman scattering [10, 11]. Furthermore, knowing the true local atomic configurations
in BaTiO3 throughout its various phases would be crucial to a successful theory of the
microscopic mechanism of phase transitions in this material. Recent first principles
calculation [104] of the ground state structure and phase transitions of BaTiO3 have
found further evidence of the order—disorder nature of its phase transitions. These cal-
culations require atomic configurations as their initial input parameters. The details
of the interactions within the crystal can only be properly understood with knowledge
of the true microscopic structure. Recent XAFS measurements on a variety of per-
ovskite ferroelectrics and antiferroelectrics including KNbO3 [12], KTag.91Nbg O3
[13-15], NaTaOs3 [16], Nagg2Ko158TaO3 [16], PbTiO3[18,19], and PbZrO3 [17] have
shown order-disorder character in phase transitions originally believed to be of the
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displacive type. The connection between the off—center displacements of the disor-
dered structure and the softening of the transverse optical phonon modes has been
successfully explained [105] for PbTiO3 and KNbO3.

5.2 BaTiO; EXAFS Measurements

It is my wish to repeat this analysis for BaTiOj3, but there is an experimental difficulty
with BaTiOj3 that is not present with PbTiO3. As discussed in Sec. 2.3, the range of
data available imposes a natural bandwidth limiting the information content of the
EXAFS signal. The excitation energy of the titanium K edge is at 4966 eV and the
energy of the barium L;;; edge is at 5247eV. This spectrum is shown in Fig. 5.1.
The energy range between the edge steps corresponds to k = 8.2 A. Because of the
large systematic uncertainties in the determination of the background function pg at
low photoelectron wave number for transition metal oxides, the useful data range is
quite small, Ak =~ 5.0A. In Ch. 4, I fit my PbTiO; data between 1.1 and 4.2 A.
With Ak = 5.0 A, this R range of AR = 3.1 A corresponds to N; ~ 9.9. While T used
eight parameters for the final fits to the PbTiO3 data, I needed to consider as many
as fourteen parameters. The data range is thus inadequate to properly define the
structure. By corefining these data with the barium K edge data, six of the fourteen
parameters variables could be used commonly in the two data sets. Although a
corefinement formally removes the information content restriction, I found that most
of these variables were very closely coupled with the background function py and
could not be determined in a statistically significant manner. Consequently I used
only the barium K edge EXAFS for this work.

I measured the barium K edge EXAFS on powdered samples at 9 temperatures
between 35K and 750 K, a range spanning all four phases. An example of the ab-
sorption data is shown in Fig. 5.2.

Background subtractions were performed with AUTOBK using the technique de-
scribed in Sec. 2.2. The isolated x(k) are shown in Fig. 5.3 at various temperatures.
The background removal parameters used in AUTOBK to produce the x(k) spectra
are given in Table 5.2.

To test the order—disorder model with these data, I created theoretical fitting
standards using FEFF6 and the rhombohedral crystal structure [4] of BaTiO3 at 40 K.
The contributions from these paths as calculated by FEFF6 were varied according
to Eq. (2.10). The values for N were set as indicated by the rhombohedral local
symmetry as shown in Table 5.3. To determine the path lengths R of Eq. (2.10), I used
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Figure 5.1: The XAFS spectrum of BaTiO3 in an energy range spanning the tita-
nium K edge at 4966 eV and the barium L;;; edge at 5247eV. The XANES feature
discussed in Ch. 7 is shown in the dashed box.

Table 5.2: Background removal parameters used in AUTOBK for the BaTiO3 data.
The value of Ej was fixed in each of the background removals. This value corresponds
to the x—axes of Fig. 5.2. [0 — rpkg] is the region over which the non-structural Fourier
components are optimized in the background removal. [r,, — i) is the data range
in which the overall scaling factor for the theory is chosen for optimizing the low
frequency components of the signal. The default values in AUTOBK for the k-weight
(1) and Hanning window sills (0) were used.

‘ edge Ey Fnin kmax k-weight 7y, Tlst‘
| Ba K 374410 2  end of data 2 15 25 |
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Figure 5.2: Barium K edge absorption spectrum in BaTiOsj.

the five structure parameters shown in Table 5.5 as possible fitting variables and from
these determined R for each path. Using these five structural parameters as fitting
parameters, this fitting model allows, as a limiting case, the possibility of finding the
cubic, centrosymmetric local structure. The remaining fitting parameters considered
were o2 for each of the single scattering (SS) paths, phase corrections parameterized
as Fj variations for each species of backscattering atom, and an amplitude correction
for the titanium backscatterers. The parameters for all multiple scattering (MS)
paths considered in the fits were determined from this set of fitting variables without
introducing new variables. For the fits shown in Figs. 5.4 — 5.7, ten free parameters
were used. The fitting ranges, information content, and statistical parameters of these
fits are shown in Table 5.4. In all cases, the number of parameters varied was smaller
than the information content of the analyzed portion of the signal. The range in R
space included SS out to the fifth coordination shell and MS paths at the distance
of the fifth shell. The only significant MS paths were double and triple scattering
among barium and oxygen atoms along the face diagonal of the unit cell.

A thorough explanation of how the five structural parameters were used in FEFFIT
to constrain the fits is given in Sec. A.2. The fits shown in Figs. 5.4 to 5.7 consider
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Figure 5.3: The (k) spectra for BaTiOj3 at several temperatures. One data set from
each of the four crystallographic phases is shown. The data are the average of two
or three scans taken at each temperature. The dashed line is the lower bound of the
data range used in the fits and the arrows indicate the upper bound.

five coordination shells. There are several nearly collinear MS paths at the distance
of the 5" shell. The buckling angle in these paths was less than 4°. Due to this
small angle and the long path length, changes in this angle were difficult to resolve,
particularly at high temperature, and did not contribute significantly to my ability
to distinguish between the different local structural discussed below. The method of

measuring buckling angle is discussed in detail in Sec. A.1.2 and was used in these
fits.

Fits to the data at several temperatures using the rhombohedral local structure are
shown in Figs. 5.4 to 5.7. T found good agreement to the data using the rhombohedral
model at all temperatures. In Ref. [98], S? for barium was found to be 1.00(5) and
so was set to 1 for these fits. The phase corrections [50] for the three types of
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Table 5.3: Multiplicities and lengths of the various near neighbor bond lengths in
BaTiOs3 for the various local symmetries predicted by the displacive model. In the
order—disorder model the rhombohedral local structure persists in all phases. All
distances are in Angstroms and were determined from the crystallographic data in
Ref. [4] at 40K, 250K, 300K for the three low temperature phases. The cubic
distances assume the perovskite structure with a = 4.016 A.

local Ba—-Ba and
symmetry Ba-O Ba-Ti Ti-Ti Ti-O
1 x 3.370
3 x 2.786
thombohedral 6 x 2828 5 X 3330 6 4003 3 X 18T
3 x 2.886 X o X e
1 x 3.583
1 x 2.793
4 x 2.808 2 x 3.416 9 % 3.986 2 x 1.875
orthorhombic 2 x 2.837 4 x 3.468 1 4.018 2 x 1.997
4 x 2.854 2 x 3.532 : 2 x 2.146
1 x 2.897
4 x 2.808 1 x 1.829
tetragonal 4 x 2.824 i i gg%; ;1 i igg% 4 x 2.000
4 x 2.868 : ' 1 x 2.206
cubic 12 x 2.839 8 x 3.478 6 x 4.016 6 x 2.008
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Table 5.4: Fourier transform ranges (Ak), fitting ranges (AR), number of independent
points (Ny), the number of parameters used in the fits (P), number of degrees of
freedom (v), the measurement uncertainty in R-space (,), reduced chi-square (x2),
and R—factor (fractional misfit) for the fits to the rhombohedral structure for BaTiOj3.
The ten free variables in these fits were 3 phase corrections, 5 02’s, the lattice constant
a, and dp,. x(k) was weighted by k for all Fourier transforms.

| temperature Ak AR N, P v oy % R |

600 K
750K

3,10]
3,10]

1.6,5.,5] 184 10 84 0.0007 15.4 0.0008
1.6,5.5] 184 10 8.4 0.0008 11.2 0.0025

35K 3,15] [1.65.7] 320 10 220 0.0009 848 0.0088
150K [3,15] [1.6,5.7] 320 10 22.0 0.0008 74.1 0.0062
200K [3,14] [1.6,5.7] 295 10 19.5 0.0010 41.8 0.0056
250K [3,13] [1.6,5.7] 27.0 10 17.0 0.0009 48.5 0.0049
300K [3,12] [1.6,5.7] 245 10 145 0.0007 72.3 0.0045
350K [3,12] [1.6,57] 245 10 145 0.0011 22.7 0.0057
450K [3,10] [1.6,5.7] 195 10 9.5 0.0008 12.6 0.0009

[ [

[ [

Table 5.5: Fitting parameters used in the fits of the barium K edge data to the
rhombohedral local structure. The initial values [4] are for the 40 K crystal structure.
Three of these parameters had little impact on the quality of our fits and were con-
sistent with their initial values at all temperatures. For the results in Table 5.4 these
values were fixed to their initial values.

‘ param. description initial value ‘
a measured the rhombohedral lattice constant 4.0035 A
Q set, the rhombohedral angle 89.84°
S set the rhombohedral displacement of the ti- 20.015

tanium atom

5 measured the displacement of the oxygen atom in the 0.009
RE # and ¢ directions '
5o. set the displacement of the oxygen atom in the 0.018

z direction
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backscatterers were expressed as shifts of E, and were found to be —2.18(70)eV
for oxygen, —3.89(87) eV for titanium, and —2.75(1.54) eV for barium relative to the
nominal value of 37441 eV. The measured o?’s were fit with the Einstein temperatures
[53] shown in Table 5.6. The lattice constant a showed a thermal expansion from
4.001(1) A to 4.041(9) A between 35K and 750 K. The parameter do, varied smoothly
from 0.015(6) to 0.027(4) in that temperature range. The other three structural
parameters in Table 5.5 showed no change from their initial values outside of their
uncertainties and so were fixed to their 40 K values.

Figure 5.4: Fit to the Ba K edge data in BaTiO3 at 35 K. The magnitude of the
complex Fourier transform of x(k) is shown. The diamonds (¢) are the data and the
line is the fit.

Although the success of the rhombohedral structural model is good evidence to
support an order—disorder model in BaTiOg, it is not compelling by itself. I repeated
the analytical approach described above on the data in the orthorhombic, tetragonal,
and cubic phases. In each of these phase, I used the average structure as the fitting
model and created fitting standards with FEFF6 using these average structures. I
used the multiplicities N given in Table 5.3 and varied R for each path according to
the values of the structural parameters appropriate to the orthorhombic, tetragonal,
and cubic phases. In Table 5.7 T compare the reduced chi-squares y? for the or-
thorhombic, tetragonal, and cubic models with the x? from the rhombohedral fitting
model. As discussed in Sec. 2.4, the uncertainty in a good EXAFS measurement is
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Figure 5.5: Fit to the Ba K edge data in BaTiO3 at 200 K. The magnitude of the
complex Fourier transform of x (k) is shown. The diamonds (¢) are the data and the
line is the fit.
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Figure 5.6: Fit to the Ba K edge data in BaTiO3 at 300 K. The magnitude of the
complex Fourier transform of x(k) is shown. The diamonds (¢) are the data and the
line is the fit.
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Figure 5.7: Fit to the Ba K edge data in BaTiO3 at 750 K. The magnitude of the
complex Fourier transform of (k) is shown. The diamonds (¢) are the data and the
line is the fit.

Table 5.6: Einstein temperatures for the five single scattering paths considered in the
barium K edge fits to the rhombohedral model.

| SS path Op |
1%t shell O —— 630(99) K
2"d shell Ti +——  267(5) K
3" shell Ba +——  161(4)K
4™ ghell O —  449(80) K
5 shell Ba +——  152(6)K
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generally dominated by systematic errors. The statistical errors of the measurement
are small compared to the uncertainty of the fitting standards and of the removal of
the background function 4. In evaluating x2, I normalize by the estimated statistical
uncertainty and would get x% = 1 if the statistical errors were dominant. That x?2
is, in general, larger than 1 even for fits that looks good upon inspection and give
physically reasonable results indicates that systematic errors dominate. T account for
this by scaling the error bars on our fitting parameters by a factor of y,. Note that
the absolute error in these fits is quite small as the R—factors shown in Table 5.4 are
less than 1 percent. The measured values of x2 provide a means to compare differ-

ent fitting models. As discussed in Sec. 2.3, if the x2’s of the two models differ by
2v2

N

As shown in Table 5.7, there is no preference for the rhombohedral model by this

more than a factor of 1+ the model with the smaller x? is significantly better.

criterion.

Table 5.7: Comparing the reduced chi-square for the rhombohedral model with those
of the average structural models in the orthorhombic, tetragonal, and cubic phases.

phase structural model
X2 (thomb.) 2 (ortho.) X2 (tetr.) x2 (cubic)
. | 200K 41.8 32.6
orthorhombic 550 K 185 479
tetragonal 300K 72.3 71.1
350K 22.7 22.3
450K 12.6 12.2
cubic 600 K 15.4 10.4
750K 11.2 10.8

To distinguish the structural models, I rely on physical arguments. In the fits to
the tetragonal and cubic phase data using the tetragonal or cubic local symmetry as
the fitting model, T found that o2’s obtained from the minimizations were consistently
larger than those found using the rhombohedral local symmetry. These values are
shown in Table 5.8 for the 02’s of the barium-titanium bonds. These larger 0%’s can
be understood in two ways. They can result from a softening of the effective spring
constant connecting the atoms. This seems unphysical. As shown in Table 5.3, the
barium—titanium bond lengths change by at most 3 percent, but the change in o2 is
much larger. A softening of the spring constant would result in a faster increase of o2
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with raising temperature. The results shown in Table 5.8 show discontinuities at each
of the phase transitions when the average structure fitting models are used, but the
rate of change of 02 with increasing temperature is the same regardless of which struc-
tural model is used. A softening of the effective spring constant is inconsistent with
the measurements. In fact, the temperature dependence of 02 assuming a rhombohe-
dral local structure gives a temperature dependence consistent with a force constant
which fits the single Einstein temperature given in Table 5.6. The latter explanation
is more physically reasonable. The fit using the cubic local symmetry requires a larger
o? to compensate for the static disorder of the true rhombohedral local symmetry.
The rhombohedral fitting model has an inherent amount of static disorder due to the
set of barium-titanium path lengths used to create the fitting standards. Using the
R’s and N’s shown in Table 5.3 and the static cumulant formulas of Ref. [51], the
rhombohedral model has a built-in static disorder of 0.0038 A2. The cubic model has
no static disorder, thus requires an enhanced o2 to compensate for its neglect. The
orthorhombic and tetragonal models have built-in static disorders of 0.0017 A% and
0.0028 A2 respectively. The 02’s shown in Table 5.8 for the orthorhombic, tetragonal,
and cubic phases are systematically larger than for the rhombohedral model. In each
case, within their uncertainties, these 02’s are those of the rhombohedral model plus
a static component to correct for neglecting the contribution of the rhombohedral
disorder.

Table 5.8: o%s of the barium-titanium distance in the high temperature cubic phase
as measured using the rhombohedral and cubic local symmetries. The values for the
rhombohedral model come from the Einstein temperature shown in Table 5.6. All
numbers have units of A2,

phase structural model
rhombohedral orthorhombic tetragonal cubic
. | 200K 0.0038(4) 0.0070(3)
orthorhombic | o201 0.0046(5) 0.0077(4)
tetragonal 300K 0.0055(7) 0.0075(10)
350K 0.0064(8) 0.0085(12)
450K 0.0083(10) 0.0137(10)
cubic 600 K 0.0111(12) 0.0175(10)
750 K 0.0140(11) 0.0170(14)
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The physical behavior of the 0*’s in the rhombohedral fitting model is a strong
argument in favor of the order-disorder model over the displacive model in BaTiOj3.
However, the distinction between the displacive and order—disorder models on the
basis of our barium K edge EXAFS data may not be fully compelling. This ambiguity
will be resolved by consideration of the titanium K edge XANES spectra presented
in Ch. 7.



Chapter 6

EXAFS MEASUREMENTS ON EuTiOg

Now I turn my attention to a third titanate perovskite, EuTiO3. Unlike PbTiO;
and BaTiOg, the local structure of EuTiOj3 retains its crystallographic centrosymme-
try at all temperatures, showing no evidence of structural or electric phase transitions.
It is an antiferromagnet at very low temperature [106,107], but shows not ferro— or
antiferroelectric behavior.

I have two interests in studying EuTiOs. In the previous two chapters I have
demonstrated the persistence of local distortions into the crystallographically cubic
phases of PbTiO3 and BaTiOj3. It adds weight to the argument to show an example
of successful analysis on a structure with centrosymmetry. In Ch. 7 it is necessary
to distinguish the structural contribution of the near—edge structures of PbTiO3 and
BaTiOj3 from the thermal contribution. The main result of the analysis presented in
this chapter is be mean square displacement o2 of the titanium-oxygen bond. At the
end of this chapter I derive a relationship between this measured o2 and the thermal
contribution to the near—-edge structure of titanium perovskites.

6.1 FEuTiO; EXAFS Measurements

Data was collected at both the titanium K and europium L;;; edges at 15 K, 128 K,
300 K. Samples of these spectra are shown in Fig. 6.1. The titanium edge data were
affected by systematic noise beyond 15.5 A~'. The useful data range at the europium
Lyrr edge was limited by the presence of the L;; edge to about 12.5 AL

Background subtractions were performed using AUTOBK using the technique de-
scribed in Sec. 2.2. The isolated y (k) is shown in Figs. 6.2 and 6.3 for the two edges
at various temperatures. The background removal parameters used in AUTOBK to
produce the x (k) spectra are given in Table 6.1.

To fit the data, I used FEFF6 to generate a set of fitting standards based on the
perovskite structure and a lattice constant of 3.923 A, which is about 0.02 A larger
than that given in Ref. [108]. At the europium edge, I considered SS paths out the
fourth coordination shell. At the titanium edge I considered SS paths out to the
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Figure 6.1: The absorption edges of EuTiO3 at 15K. The titanium K edge is at
4966 eV, the europium Ly edge is at 6977eV, and the europium L;; edge is at
7617eV.

Table 6.1: Background removal parameters used in AUTOBK for the EuTiOj; data.
The value of Fy was fixed in each of the background removals. These values cor-
respond to the energy axes of Fig. 6.1. [0 — Ryl is the region over which
the non—structural Fourier components are optimized in the background removal.
[Ryrg — Rist] is the data range over which the theory is scaled in the optimization.
The data range over which the background was removed, [kpin — kmin] was limited
in the europium data by the onset of the europium L;; edge.

‘ edge Ey Emin kmagz k-weight  Ryry Ris ‘
Ti K 4971.2 0.85 end of data 1 0.98 2.14
Eu L;;; 6978.0 1.55 12.6 1 0.98 2.95
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Figure 6.2: The temperature dependence of x(k) for the titanium K edge of EuTiOs.
The boundaries of the Fourier transform used in the fits are shown by the dashed
lines.
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Figure 6.3: The temperature dependence of x(k) for the europium L;;; edge of
EuTiO3. The boundaries of the Fourier transform used in the fits are shown by
the dashed lines.
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fourth shell and the collinear double and triple scattering paths involving the first
shell oxygen atoms and the third shell titanium atoms. These MS paths were at the
same distance as the third shell titanium atoms and were the only significant MS
paths.

The cubic perovskite structure was the basis of my fitting model. 1 used an
isotropic expansion factor as described in Sec. A.3 to parameterized the bond lengths.
I assigned a o2 to each near—neighbor bond length and a phase correction in the form

2 and the phase

of an Ej shift for each species of backscatterer. I parameterized o
correction for each multiple scattering path considered in the manner described in
Sec. A.1.1. For the europium edge fits it was necessary to introduce an amplitude
correction to the titanium backscattering in the form of a correction to the photo-
electron mean free path for that scattering path. At each temperature the data from
the two edges were refined simultaneously. As the lattice expansion constant and o2
for the titanium—europium bond are common parameters between the two data sets,

corefinement allows tighter constraints to be placed on the parameter set.

Table 6.2 shows the transform and fitting ranges used in the fits to the europium
and titanium edge data along with the various statistical parameters of the co-refined
fits. See Sec. 2.3 for a discussion of the statistical parameters. Example fits are shown
in Figs. 6.5 - 6.8

Table 6.2: The upper table shows Fourier transform and fitting ranges used for the
titanium and europium edges in EuTiOg, as well as the information content of each
signal. The lower table shows results for the corefinements at each temperature,
including the total number of independent points Ny in the corefinement, the number
of parameters varied in the final fits P, the number of degrees of freedom v, the
measurement uncertainty in R-space (,) for each absorber, the reduced chi-square
X2, and the R-factor.

edge k-range k-weight R-range N;
Ti  [4.0-13.0] 2 [1.2-4.0] 1747
Eu [3.0-12.0] 1 [1.8-4.0] 13.95
temp. N P v o, (Ti) o, (Eu) 2 R

15K 31.42 16 1542 0.0129 0.0014 90.05 0.0092
128 K 3142 16 15.42 0.0079 0.0012 111.91 0.0043
300K 31.42 16 15.42 0.0056 0.0009 158.91 0.0055
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Figure 6.4: Determination of S for the K edge of titanium in EuTiOs. The correla-
tion between Sg and o2 for the titanium-oxygen bond is mostly broken by sequentially
fixing S? and performing the fits using different k& weights. This method works well
since the first shell signal is well isolated in the Fourier transform of the titanium
x(k) in EuTiO;z. The three lines form a small triangle around Sg =~ 0.95.

For the titanium atom, S3 was determined by setting it to a sequence of values
between 0.7 and 1.1 and varying the remainder of the parameters in the problem.
For each value of S?, the titanium data were fit with & weighting of 1, 2, and 3.
Because S? is highly correlated with the 02’s used in the problem and because o? is
multiplied by k? in the EXAFS equation Eq. (2.10), the best fit values of the o%’s
vary with different k& weights. In Fig. 6.4, I show the variation of the best—fit value of
o? for the first neighbor titanium—oxygen bond. Since any measurement of the fitting
parameters should find the same Sg , the true value of S? for these data must be at
the intersection of the lines for the three k& weights. In Fig. 6.4 the three lines nearly
intersect, forming a small triangle around S? a2 0.95. This value is used in subsequent
fits. T approximate the uncertainty in this value by the extent to which the error bars
on the best—fit values of o2 for k weight of 1 and 3 overlap. Thus Sz = 0.95(15).

This method of determining Sg works by forcibly removing the correlation between
S2 and other parameters that effect the amplitude of x in Eq. (2.10). For the first
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shell peak in the transform of the titanium edge x(k), only S7 and the o2 for the
first shell bond significantly effect the amplitude. Thus the correlation between the
two is mostly broken by sequentially fixing S? in the manner described above. This
same method did not work for the europium edge. For that edge, the first shell
is not well isolated from other shells. Thus fixing S3 does not sufficiently break
correlations among the amplitude factors. When this method was attempted using
the best—fit o’s for the europium-oxygen and europium—titanium bonds, Sg values of
about 1.5 and 1.15 were found respectively. Neither of these are physically reasonable
values. For the titanium edge, the first shell is well isolated from higher shells, thus
the method worked well. T therefore allowed S; for the europium atom to float in
subsequent fits.

Table 6.3: Fitting parameters for EuTiO3. Parameters used to modify x(k) for either
edge are indicated in the first column. The common parameters between the two edges
are also indicated. Best—fit values for the o%’s are given as Einstein temperatures fit
to the 0%’s measured at each temperature. Offsets values of 0%’s are given for those
bonds which required one.

‘ edge parameter  description best—fit value ‘
Ti Ey(O) dE, for O scatterer —1.81(1.11) eV
Ti  Ey (Eu) JEy for Eu scatterer —2.87(1.61) eV
Ti  Eg (Ti) JEy for Ti scatterer 5.57(1.84) eV
Ti o2 (Ti-O)  MSD for Ti-O bond 451(26) K
Ti o2 (Ti-Ti) MSD for Ti-Ti bond 329(26) K + 0.0016(5) A2
Eu S} Amplitude reduction factor 1.10(11)
Eu E; (O) JE, for O scatterer 4.57(62) eV
Eu  E, (Ti) dEy for Ti scatterer 4.79(67) eV
Eu FEj(Eu) JEy for Eu scatterer 4.27(1.24) eV
Eu o¢% (Eu-O) MSD for Eu-O bond 0.0135(21) A2
Eu o2 (Eu-Eu) MSD for Eu-Eu bond 158(7) K
Eu A(Ti) JE; for Ti scatterer —1.03(47) eV

both 7 lattice expansion coefficient 6.7(2.4) - 105 A/K
both o (Eu-Ti) MSD for Eu-Ti bond 200(24) K + 0.0013(5) A2

Fourteen of the sixteen variables used in the fits to EuTiO3 along with their
best—fit values are shown in Table 6.3. These include §F, corrections for each of
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the first three shells and mean square displacements (MSD) o2 for each of the first
three bonds around both the titanium and europium atoms. Also used were an Sj
for the europium atom, a lattice expansion constant 7, and an amplitude correction
for the titanium backscatterers around the europium atoms. These were applied to
the various SS and MS paths as described in Secs. A.1.1 and A.3. These variables
were used to fit both edges simultaneously at each temperature. I also included the
fourth shell oxygen atoms in both parts of the fits, but the o2 for these paths were
not well determined in these fits.

In Table 6.3, the values for the o2 are given as Einstein temperatures which were
fit to the results for the 0?’s at each temperature. For two bonds the 02’s required a
small offset to follow the behavior of an Einstein model. The o for the europium—
oxygen bond did not change with temperature outside of its error bars, so no Einstein
temperature is reported for that bond in Table 6.3.

S2 for the europium atom is rather large, but consistent with 1.0 within its error
bar. The lattice constant increased linearly from 3.920(5) A at 15K to 3.940(7) A at
300 K. These values are about 1 percent larger than the lattice constant given in Ref.
[108].

From these data I obtained a good measurement of o2 for the titanium-oxygen
bond, which was my stated goal in analyzing these data. There are, however, several
systematic problems in this analysis. The best—fit lattice constant as measured by
EXAFS is 0.5% larger than that measured by diffraction. Also the temperature
dependence of three of the o2 fail to follow properly and Einstein behavior. This may
indicate the presence of static local disorder which was not included in my fitting

model. T will not address these systematic problems with the EuTiO3 fitting model

2

in this thesis as they do not effect the quantitative result on the titanium-oxygen o*,

which was the important result of this chapter.

6.2 Thermal Distortion Parameter

In Ch. 7 T use the Einstein temperature of the titanium-oxygen bond to interpret the
near—edge structure of the EuTiOj titanium K edge XANES spectrum. As discussed
in Sec. 7.1, there is a peak in the near—edge spectra of transition metal oxides that
is a fingerprint that the transition metal atom is located in a site that lacks point
centrosymmetry. From a simple perturbation theory argument, I show that there
is a simple relationship between the magnitude of the distortion away from point
centrosymmetry and the area of the fingerprint peak in the near-edge spectrum. If d
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Figure 6.5: Fit to the titanium K edge data in EuTiO3 at 15K. The magnitude of
the complex Fourier transform of y(k) is shown. The diamonds (¢) are the data and
the line is the fit.

Figure 6.6: Fit to the titanium K edge data in EuTiO3 at 300 K. The magnitude of
the complex Fourier transform of x(k) is shown. The diamonds (¢) are the data and
the line is the fit.
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Figure 6.7: Fit to the europium L;;; edge data in EuTiO3 at 15K. The magnitude
of the complex Fourier transform of y(k) is shown. The diamonds (¢) are the data
and the line is the fit.

Figure 6.8: Fit to the europium L;;; edge data in EuTiO3 at 300 K. The magnitude
of the complex Fourier transform of (k) is shown. The diamonds (¢) are the data
and the line is the fit.
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is a parameter describing the displacement of the titanium atoms from the midpoint
of the oxygen octahedron, then

Ao {(e-d)?) (6.1)
which, for a sample which is randomly oriented with respect to the x-ray beam, is

2
A x % (6.2)

Consider a line in one dimension of equally spaced atoms of alternating species.
If the distortion is the displacement of one of the species from its nominal location,
then ¢ is the displacement of that species from the midpoint between its neighboring

atoms,

(6.3)

where ry(5) is the distance from the displaced atom to its nearer (further) neighbor.
In the case of a titanium perovskite, the r’s represent titanium—oxygen bonds along
each of the Cartesian axes.

Eq. (6.3) holds for each of the three Cartesian directions, so I define a thermal
distortion parameter d; = V/36. In the absence of a static displacement and of thermal
motion, the area of the peak A observed in the XANES spectrum is expected to be
zero. At finite temperature, a small pre—edge peak is still expected due to the thermal
mean squared variation of the two metal-oxygen bonds. Taking a snapshot of the
three atoms along one of the Cartesian directions, |ry — 71| > 0 at any instant due to
this thermal motion. Thus an area A; oc d? will be measured.

To start, consider a split in distances ( = ro —ry. Each of the r; are ro — A; where
A; is some instantaneous deviation from ry due to thermal motion. So ( = Ay — Ay
and the thermal average of its square is (%) = ((Ay — Aq)?).

The distribution of A; is a Gaussian of half width equal to the measured 2.
Normalized to unit area, this distribution function is

1
Pa, = 1 /E T (6.4)
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Integrating over this distribution,

o0

(%) = /(A2 — Ay)? - Pa,dA; - Pa,dA, (6.5)

—0o0

2 00
1
= ( ) / [A2 4+ A2 = 20 A,] - e 2127 A, - e 25277 gA,
202
—0o0
The cross product term in this integral is 0 by symmetry. The other two integrals are
the same and are easily solved. The thermal mean square of the split in distances is

(¢?) = 20" (6.6)

This result is obtained in each dimension, so, from Eq. (6.3),

&2 = 3<<g)2> - 3%2 (6.7)

dy = /22 (6.8)

Even a centrosymmetric perovskite such as EuTiO3 has a small peak just above the
Fermi energy of a size proportional to d?. This can be seen in the data in Fig. 7.9.
In my analysis of the Ti K edge data on EuTiOg3, [ assumed that the titanium atom
did lie in a centrosymmetric site, thus the Ti-O bond length and 0? was the same
in all six directions. This discussion could easily be generalized to consider different
bond lengths and o?’s.

Table 6.4: Thermal distortion parameter in EuTiO3; for an Einstein temperature
6 = 451 K for the titanium—oxygen bond.

temp. o2 (A%) d, (A)

15K 0.00448 0.082
128 K 0.00477 0.085
300K 0.00705 0.103
500K 0.01061 0.126




Chapter 7

XANES MEASUREMENTS ON BaTiOj;, PbTiO3, AND
EU.TiOg

In the titanium K edge spectra of PbTiO3 and BaTiO3 shown in Figs. 4.1 and 5.1,
a prominent feature in the near edge region of these materials is seen. In this chapter
I examine the dependence of this feature on the local structures about the titanium
atoms in PbTiO3, BaTiO3, and EuTiO3. Careful consideration of the XANES spec-
trum in these material complements the structural information available from analysis
of the EXAFS. In the case of BaTiOj3, the XANES spectrum offers crucial information
for resolving its local structure.

7.1 Symmetry and the XANES Spectrum

At the titanium K edge, a Is electron having initial angular momentum [ = 0 is
excited. Because dipole transitions dominate in p(F) the final state of the photoelec-
tron will be of angular momentum [/ = 1 due to the dipole final state selection rule.
The interaction between the photoelectron excited by the polarized radiation and a
single crystal is illustrated in Fig. 7.1. The directional sense of the excited [ = 1
photoelectron is determined by the direction of polarization of the incoming photons.
As the photoelectron has no amplitude in directions perpendicular to the direction
of polarization, p(F) will contain no information concerning the local environment
about the titanium atom perpendicular to the polarization. Thus an experiment on
a single crystal sample can resolve the directional dependence of the local structure,
while an experiment on a polycrystalline sample averages over all directions.
Titanium and other transition metals possess a large density of unfilled d states
just above the Fermi energy. Ordinarily, this d density is not accessible to the XAFS
experiment on a K edge due to the dipole selection rule, which requires that the
difference in angular momentum of the initial and final states be 1. It is well known
from molecular orbital theory [109] that mixing of the transition metal d states with
states of p character from the surrounding atoms can occur in the presence of an

asymmetric Hamiltonian, such as that for a material which lacks inversion symmetry
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Figure 7.1: Schematic of the interaction between the [ = 1 photoelectron and a square
lattice.

about the transition metal site. Materials in which the transition metal does not
reside on a site of point centrosymmetry characteristically display a peak in their
XANES spectra above the Fermi energy but before the steeply rising part of the
edge. This is shown in, for example, Refs. [110] and [111] and in numerous other
examples of transition metal oxide XANES studies in the literature. It is the same
feature shown in the dashed boxes in Figs. 4.1 and 5.1. This peak is much diminished
in transition metal oxides of point centrosymmetric local structure, as seen in the
EuTiO3 data in Fig. 6.1.

Assuming that the displacement d of the titanium atom from the site of point
centrosymmetry is a small perturbation to the crystal Hamiltonian, perturbation
theory can be applied to the problem. The effect of the displacement must be of
even parity, thus the area of the peak can be related to the displacement in three
dimensions by

A={(e-d)?). (7.1)

Here € is the polarization vector of the incident x-ray beam and the angle brackets
represent an ensemble average, possibly over orientations of € relative to d and v is
a proportionality constant. In this chapter I will determine v for PbTiO3, BaTiOg,
and EuTiOj3. For a polycrystalline sample the ensemble average over orientations of
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14
3
a polarized, single crystal experiment, the area A will be sensitive to the direction of

the crystal domains relative to € leads to a factor of %, i.,e. A =~5-. In the case of
d. Tn the most general case, this expression for A is too simplistic. For a crystal of
arbitrary symmetry, a tensor of fourth rank would relate € and dto A [112].

7.2 Measuring the Area of the Near Edge Peak

To interpret the near-edge peak associated with the displacement of the titanium
atom from centrosymmetry in terms of the local structure using Eq. 7.1, it is necessary
to measure its area. In this section, I will describe the method I developed for doing
SO.

To measure XANES peak areas, [ wrote a program called PHIT!. I wanted a tool
of sufficient generality to tackle this problem with flexibility and also to solve several
related problems in the interpretation of XAFS and other data. The purpose of PHIT
is to fit an arbitrarily parameterized sum of lineshapes to arbitrary real valued data.
For use with XANES data, I fit an arctangent or similar function along with one or
more peaked lineshapes to the data. The parameters describing the lineshapes can
be used as the fitting parameters. PHIT is sufficiently general to solve other problems
as well. T used PHIT throughout Chs. 4 — 6 to fit Einstein temperatures to measured
values of o2. PHIT has even been used to fit lattice parameters to powder diffraction
data [113] and other problems.

The input structure to PHIT is very similar to that of FEFFIT. The user specifies
a group of set and guess variables in the same manner as in FEFFIT?. A set of
lineshapes is specified and parameterized in terms of the set and guess values. The
same Levenberg-Marquardt [61] algorithm used in FEFFIT is used in PHIT. Statistical
analysis is performed by PHIT, including computation of error bars on the fitting
parameters and of correlations between the parameters.

It is common in the literature to fit lineshapes to XANES spectra and to interpret
energy positions and line widths in terms of molecular orbitals. T find these inter-
pretations ambiguous. My purpose in fitting lineshapes to the spectra shown in this
chapter is to develop a numerical representation of the edge structure and to isolate
the portions of the spectra that show temperature dependence from those parts that

T usually pronounce this “pee-hit” to disguise the fact that this is a really dumb name for a
computer program.

% See Appendix A or the FEFFIT document [52] for the details of using FEFFIT.
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are essentially constant with temperature. In all these data it is a good approxima-
tion to leave most of the lineshapes constant in temperature within the limited energy
range that I consider and to measure the variation of the lineshape used to describe
the peak that arises from the off-center displacement of the titanium atom.

An example of fitting a set of lineshape to XANES data is shown in Fig. 7.2.
These data are the titanium K edge of polycrystalline BaTiO3 at 80 K. The fit uses
three lineshapes. Since I don’t wish to ascribe any physical significance to any of
these lineshapes, I am free to choose lineshapes that provide a faithful numerical
representation of the data. In Fig. 7.2, T used two Lorentzians for the two peaks. The
background portion of the fit is an arctangent function with an energy dependent
prefactor. In the fits to the data at varying temperatures, the parameters for the
higher energy peak and for the background function where held constant and only

the height of the lower energy peak function was varied.
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Figure 7.2: Example use of PHIT to obtain a numerical representation of the titanium
XANES spectrum of polycrystalline BaTiO3 at 80 K. The area of the shaded region
is measured to obtain the temperature dependence of the peak that arises from the
displacement, of the titanium atom.
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7.3 The Temperature and Polarization Dependence of the XANES Spec-
tra of BaTiO3

In Ch. 5 T analyzed the EXAFS spectra of BaTiO3 as a function of temperature

2 of the barium—

through the various phase transitions. From the behavior of the o
titanium bond I argued that the order—disorder model provides a more suitable expla-
nation of the local structure than does the displacive model. Since fits using average
structure predicted by the displacive model are as satisfying by statistical criteria
as are fits using the rhombohedral local structure predicted by the order—disorder
model, it is necessary to examine the XANES spectra of polycrystalline and single
crystal BaTiO3 samples. The temperature dependence of the XANES spectrum in a
polycrystalline sample is shown in Fig. 7.3. Room temperature single crystal data ob-
tained as described in Sec. 3.2.2 are shown for BaTiOj3 in Fig. 7.4 and, for comparison,

for PbTiOs3 in Fig. 7.5.

Examining the polycrystalline data shown in Fig. 7.3 with Eq. 7.1, it follows
that the titanium atom sits in a non-centrosymmetric site in BaTiOg, as there is a
distinctive peak in the spectra at each temperature. However information about the
direction of d is not available in polycrystalline data. To determine the direction
of CZ: I examine the single crystal, single domain spectra of BaTiO3 and PbTiOj3
shown in Figs. 7.4 and 7.5. There is a significant difference in the oriented spectra of
PbTiO3 but only a small difference in the oriented spectra of BaTiO3. As discussed in
the following paragraphs, the PbTiO3; data indicate a tetragonal titanium distortion,
i.e. dis along a (001) axis, while the BaTiO; data indicate a nearly rhombohedral
displacement, i.e. d approximately along a (111) axis.

To understand why the BaTiO3 and PbTiO3 XANES data indicate these direc-
tions for the titanium distortions, consider the local environments about the titanium
atom predicted by the displacive and eight—site models. They are depicted in the car-
toon shown in Fig. 7.6. Fig. 7.6a shows the tetragonal titanium distortion predicted
by the displacive model for a crystallographically tetragonal phase. The titanium
atom, depicted by the head of the arrow, is displaced in the (001) direction. The
entire crystal is tetragonally distorted and the macroscopic polarization points along
a tetragonal axis. If the polarization vector of the x—rays is parallel to the crys-
tallographic ¢ axis, thus parallel to d-: the area A under the peak will be large. If
the polarization is perpendicular to cZ; then é-d = 0 and A will vanish. This pic-
ture is consistent with the PbTiO5; data but not with the BaTiO3; data. As shown
in Ch. 4 and in Refs. [18] and [19] the local structure of PbTiO; is tetragonal at
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Figure 7.3: The titanium K edge XANES spectrum of polycrystalline BaTiO3 at
several temperatures. 80K is in the rhombohedral phase, 300 K is in the tetragonal
phase, the remaining two temperatures are in the cubic phase. The peak discussed
in this chapter is shown within the dashed box.
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Figure 7.4: Titanium K edge XANES of single domain, single crystal BaTiO3 with the
x-ray polarization parallel (top) and perpendicular (bottom) to the crystallographic
c-axis. See Sec. 3.2.2 for a discussion of isolating the spectrum for € || ¢.
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Figure 7.5: Titanium K edge XANES of single domain, single crystal PbTiO3 with the
x-ray polarization parallel (top) and perpendicular (bottom) to the crystallographic
c-axis. See Sec. 3.2.2 for a discussion of isolating the spectrum for € || ¢.

room temperature. A local tetragonal distortion of the titanium atom in BaTiOj3
would be inconsistent with its XANES spectra, as the peak does not vanish when the

polarization is perpendicular to the ¢ axis.

Fig. 7.6b shows a two-dimensional “four-site” schematic of the eight—site model
for a crystallographically tetragonal phase. In this model, the titanium atom is always
displaced towards the corner of the unit cell. In three dimensions this displacement
is in a (111), or thombohedral, direction. In this phase, the titanium displacement
is randomly distributed among those directions with a positive component along
the c-axis. In each unit cell, the local distortion and the local dipole point in a
rhombohedral direction. When these vectors are averaged over the entire crystal, the

observed displacement and macroscopic polarization point in a tetragonal direction.

XAFS, however, is sensitive only to the local structure. When the polarization of
the x-rays is parallel to the crystallographic c-axis in Fig. 7.6b, € and d form a 45°
angle. When the polarization is perpendicular to the crystallographic c-axis, € and d
again form a 45° angle. In both orientations cos (€ - d) = 45°, thus A= Ay. This
is close to the behavior of the data in Fig. 7.4. These spectra demonstrate that the
order—disorder model describes the tetragonal phase of BaTiOj;.
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Figure 7.6: Cartoon representing the local structures of tetragonal BaTiOjz in the
displacive (a) and order-disorder (b) models. The macroscopic polarization P is in
the ¢ direction. The large arrow between the panel indicates the direction of the
macroscopic polarization and the c-axis of the crystal. The shaded circles represent
the barium atoms, the heads of the arrows represent the titanium atoms, and the
oxygen atoms have been left out.
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In the range of temperatures shown in Fig. 7.3, the area under the peaks changes
from 0.20(3) eV to 0.15(2) eV. By Eq. 7.1, the magnitude of d decreases by only about
13 percent from its value of 0.23(5) A as measured from our 35 K EXAFS data. In
this temperature range, the thermal root mean square displacement of the titanium
atom from its site near the center of the oxygen octahedron given the values of o2
for the titanium—oxygen bond are much too small to account for the size of the peak
[114]. Since the local distortion persists well into the cubic phase, these data, like
the polarization dependent data in Fig. 7.4, cannot be explained by the displacive
model. Together with the barium EXAFS results, these XANES spectra demonstrate
that the local displacement of the titanium atom in BaTiOj is approximately in a
rhombohedral direction at all temperatures and that an order-disorder model explains
the dominant behavior of the local structure throughout its the phase transitions.
The small displacive component of d is smoothly varying through the various phase
transitions and |d| > 0 at all temperatures.

There is one more piece of information about the local structure of BaTiO3 con-
tained in Fig. 7.4. The peaks in the parallel and perpendicular orientations are of sim-
ilar area, but not quite the same. The areas under these peaks are A = 0.39(04) eV
and A; = 0.17(02) eV. Applying Eq. 7.1 to these areas, I find them consistent with d
lying 11.7(1.1)° towards the ¢ axis away from the (111) axis. This is a believable re-
sult for the tetragonal phase. The presence of a macroscopic polarization reasonably
could bias the locations of the minima in the local potential surface slightly away from
the (111) axes in the direction of the macroscopic polarization. Our measurements
show a slightly altered case of the eight—site model wherein the strain introduced by
the macroscopic polarization is accommodated by the appropriate displacements of
the adiabatic minima away from the (111) axes. Although this sort of fine detail
about the local structure is not resolved with statistical significance using the bar-
ium K edge EXAFS data alone, adding the single domain XANES results requires a
modified eight-site model to completely explain our XAFS data.

As mentioned in Sec. 4.1, a recent diffraction measurement [96] of PbTiO; at
low temperature suggested the possibility of a low temperature orthorhombic phase.
This suggests the possibility of an eight-site disorder model in PbTiO3. The spectra
shown in shown in Fig. 7.5 precludes this possibility. The local displacement of the
titanium atom is clearly tetragonal at 300 K. For an eight-site model to explain
the low temperature orthorhombic phase, a different local environment about the
titanium site would be required at low temperature. In light of the results of this
thesis, that seems unlikely. If a low temperature orthorhombic phase in fact exists in
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PbTiO3, I would hypothesize that the titanium displacement must be in a pseudo—
tetragonal direction. The § ratio reported in Ref. [96] is only about 1.00015 at 75 K.
This is smaller than a typical uncertainty in bond length measurement in an EXAFS
experiment. The presence of this additional phase cannot be resolved unambiguously

in an EXAFS measurement. For comparison, recall that the ¢ ratio in PbTiO; is
1.065 at room temperature.

7.4 Relating the 3d Peak to the Local Distortion in PbTiO3, BaTiOs,
and EuTiO;

As discussed in Sec. 7.1, the peak just above the Fermi energy in the titanium per-
ovskites is due to the overlap of the titanium d states with the oxygen p states. For
a polycrystalline sample, the simple perturbation argument of Eq. (7.1) relates the
area of the peak to the square of the magnitude of the displacement of the titanium
atom from the center of the oxygen octahedron. In the simplest case, the A cation
would not contribute to the area of the peak and a common constant of proportion-
ality between A and d? would be observed in all titanium-oxygen octahedrons. In

this section I measure that proportionality constant for each of PbTiO3, BaTiO3, and
EUTi03.

7.4.1 Polycrystalline PbTiO3

The XANES spectrum of polycrystalline PbTiO3 is shown in Fig. 7.7 at various tem-
peratures spanning the phase transition temperature at 763 K. I measured the areas
under these peaks using the method described in Sec. 7.2. These areas are plotted in
Fig. 7.8. Note that the peak area diminishes as the phase transition temperature is
approached from below, consistent with a small displacive component of the behavior
of the local distortion. There is a discontinuity in the area slightly above?® T,. This
behavior is consistent with the weak first order behavior of the macroscopic order
parameter. The area remains large above T, indicating that the local distortions

3 To avoid distortion of the data due to inhomogeneity in the thickness of radiation shield covering

the furnace, holes were cut in the radiation shield to allow the unobstructed passage of the
incoming and fluoresced photons. These large holes produce a temperature gradient in the furnace
such that the surface of the furnace is cooler than its center. The samples must be at the surface
and exposed to the incident x-rays, while the thermocouple was shielded by metallic pieces of
the furnace. Consequently the sample was cooler than the thermocouple. Examining Fig. 7.8, it
appears that the sample was about 15K cooler at T¢, as the discontinuity just above T, probably
represents the true phase transition temperature.
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Figure 7.7: The Titanium K edge XANES spectrum of PbTiOj3 at several tempera-
tures in the tetragonal and cubic phases. The peak discussed in this chapter is shown
within the dashed box.

persist well into the high temperature phase and requiring that they be disordered
to produce the cubic crystallographic phase. The dominant contribution to the er-
ror bars in Fig. 7.8 is systematic and is due to the uncertainties in the temperature
independent parameters used to describe the portions of the edge structure to either
side of the peak at 4966 eV as described in Sec. 7.2. These systematic uncertainties
are independent of temperature and will not effect the temperature dependence of
the area shown in Fig. 7.8. The statistical uncertainty of these area measurements
is apparently quite small, as the scatter in the points around 740 K is much smaller
than the error bars dominated by systematic uncertainties

The distortion parameter d obtained from analysis of the PbTiO3 EXAFS is de-
fined in Eq. (4.1) and plotted as a function of temperature in Fig. 4.9. Using these
values for d and the area shown in Fig. 7.8, the constant of proportionality v for
PbTiO3 is 12.3(1.4) Z—\g Alternately, the crystallography measurement on PbTiO3
[90] gives a titanium distortion parameter of 0.308 A at 300 K. Using this and the
peak area at 300K gives v = 14.2(8) g—i. The temperature dependence of the dis-
tortion parameter calculated from the peak areas and this proportionality is shown
by the crosses in Fig. 7.8 and compared to the distortion parameter obtained from
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Figure 7.8: Areas (o) under the near edge 3d peaks in the titanium K edges of PbTiO3
as a function of temperature. Also plotted are the are the distortion parameters
measured from the EXAFS (w) and shown in Fig. 4.9 compared with the distortion
parameter extracted from the areas (x) as described in the text.

the EXAFS, which are shown in both Figs. 4.9 and 7.8. These two measurements of
the distortion parameter show excellent agreement within their uncertainties. Note
that the area of the 3d peak, with its d?> dependence, provides a much more accurate
measurement of the temperature dependence of the local distortion than does the
EXAFS. As seen in Fig. 7.8, the discontinuity at 7. is within the error bars in the
plot of distortion, but is clearly evident in the plot of areas.

7.4.2 Polycrystalline BaTiOs and EuTiOg
BaTiOg

As indicated in Table 5.5, the fits to the barium edge data were insensitive to the
rhombohedral distortion of the titanium atom, thus I could not accurately measure
the temperature dependence of the displacement of the titanium atom from the center
of the oxygen octahedron with my barium edge data. With the parameters set as
indicated in Table 5.5, T measured the distortion parameter to be 0.23(1) A at all
temperatures. I then measured the areas of the peaks shown in Fig. 7.3 using the
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Figure 7.9: The titanium K edge XANES spectrum of EuTiO3 at several tempera-
tures. The peak discussed in this chapter is shown within the dashed box.

method described in Sec. 7.2. With these values obtained from the XAFS spectra, |
obtain v = 11.1(1.6) % Alternately using the 70 K crystallography data from Ref. [4]
gives a displacement of 0.229 A for the titanium atom and = 11.2(1.7) R

The 3d peaks in the EuTiO3 data shown in Fig. 7.9 are quite small. Small areas are
difficult to measure by the technique of Sec. 7.2 since the systematic uncertainties of
the technique are similar in size to the area. Instead, I evaluated difference spectra
in the near edge region between the 15K data and the data at each of the higher
temperatures. I then measured the area between 4965 and 4968 eV using a simple
trapezoid integration. The results are given in Table 7.1. Using the thermal distortion
parameters from Table 6.4, T obtain a proportionality constant of v = 13.6(2.8) g—‘;

7.4.8  Summary of Polycrystalline Results and Comparison with XANES Calcula-

tions

Table 7.2 summarizes my measurements of the proportionality constant relating the
3d peak area and the titanium displacement in PbTiO3, BaTiO3, and EuTiO3. These
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Table 7.1: Areas of the 3d peaks in EuTiO3. These are the areas of the difference
spectra between the 15K data and the higher temperature data, thus there is no
area for the 15K data. The variation is peak areas in the data is typically about 5%
between scans at the same temperature.

‘ temperature area ‘

15K —

128 K 0.031eV
300 K 0.057eV
500 K 0.089eV

numbers are in reasonably good agreement with one another. From these results I
hypothesize that the proportionality constant + is insensitive to the species of the A
cation in these three titanium oxide perovskites. Averaging over the values given in
Table 7.2 gives v = 12.5(1.4) §%.

Although the agreement in the measurement of «y is fairly good, the +’s obtained
using the crystallographic value of d for PbTiO3 and BaTiOj3 disagree with one other
outside their error bars. There is some missing physics in the simple argument pre-
sented in Eq. (7.1). In the molecular orbital picture, the peak is due to the overlap
of the titanium 3d states with the surrounding oxygen 2p states. The amount of
hybridization depends not only on the size of the distortion of the titanium atom
from a site of point centrosymmetry, but also on the proximity of the ions. If the
ions are farther apart, then the spatial overlap of the electron wave functions will be
smaller. T suggest that the large value of v = 14.2(0.8) g—\; for PbTiOj is due to en-
hancement of the hybridization due to the short titanium—axial oxygen bond length.
The parameterization of the effect of the bond length is unclear at this time.

In Chs. 8 and 9 I describe a newly developed ab initio XANES code which I use to
calculate the effect on the XANES of the displacement of the titanium atom from its
centrosymmetric site in EuTiO3. These calculations are shown in Fig. 7.10. The solid
line is a calculation using the cubic perovskite structure. This shows good agreement
in the region of the 3d peak, although the calculation fails to resolve the next peak
at about 4970 eV. For the other two calculations, I introduced tetragonal distortions
of the titanium and oxygen atoms like those found in PbTiOj while retaining the
cubic axis lengths. As the size of the displacement of the titanium atom used in the
calculation grows, the size of the calculated 3d peak grows.
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Table 7.2: Proportionality constants between A and d? for PbTiO3, BaTiOs, and
EuTiOj3. The first three columns use the distortion parameter d determined from the
EXAFS results presented in Chs. 4 — 6. The last two columns use d determined from
low temperature diffraction measurements on PbTiO3 [90] and BaTiOj3 [4]. The units

are eA_\g_

using d from EXAFS using d from cryst.
PbTiO;3 BaTiOs EuTiO; || PbTiO3 BaTiOs
12.3(1.4) 11.1(1.6) 13.6(2.8) || 14.2(0.8) 11.2(1.7)

I measured the areas of the peaks in these calculations by subtracting the calcu-
lation on the undistorted structure from the calculations on the distorted structures
and measuring the areas of the difference spectra between 4963 and 4970eV. Using
the distortion parameter defined by Eq. (4.1), I obtain a constant of proportionality
of 18.0(0.3) $£. For comparison, a similar calculation to Fig. 7.10 is shown for PbTiOs
in Fig. 9.11. I measured the constant of proportionality for the PbTiOj3 calculation
in the same manner as for the EuTiOj3 calculation and obtained 15.8(0.6) g—i. The
calculated proportionality constant is systematically larger than the experimental
number, but the area shows the same dependence on the square of the displacement
parameter.

7.4.4 PbTiOs Single Crystal Data

In this section I interpret single crystal PbTiO3 titanium K edge XANES measure-
ments within the context of the order—disorder model discussed in Ch. 4. There are,
unfortunately, significant systematic problems with the data in this section. I col-
lected single crystal PbTiO3 data on two occasions, April and November of 1995, and
both data sets are affected by experimental problems. The first attempt at collecting
the data was plagued by difficulties with the temperature controlling apparatus, while
the second data set shows systematic distortions to the data on a scale larger than
the effect that T intend to measure. Consequently, I have discarded the second data
set. After describing the problems with the temperature controller in the first data
set and how I have accounted for them, I will interpret these data.

The major problem in the April 1995 data set was that a J-type thermocouple
was used as a temperature sensor while the temperature controller used in the course
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Figure 7.10: Comparison of data and calculation of the titanium K near edge struc-
ture in EuTiO3. The data is transmission XAFS. The solid line is the XANES calcu-
lation using the cubic perovskite structure from Ref. [108]. The short dashed line is
a calculation on this same structure, but with tetragonal fractional distortions of the
oxygen and titanium atoms from sites of centrosymmetry in the unit cell equal to
those in PbTiOj3 as given in Table 4.4. The long dashed line is a calculation with those
distortions reduced by % The cell axis lengths are the same in all three calculations.

of the experiment was calibrated for K—type thermocouples. Consequently, the tem-
perature readings for this part of the single crystal data set are incorrect. For both
orientations, I intended to take data at 300, 400, 500, 600, and 700 K, however the
temperatures above room temperature were systematically higher than anticipated.
By consulting tables of voltages for the two types of thermocouple, I was able to
approximate the true temperature on the sample at the time of the measurement.
The temperatures for these data in the ferroelectric phase are 300, 431, 568, 707, and
830 K. This last temperature is in the paraelectric phase. Other than the ambiguity
about temperature, this data set seems to be of good quality and is used throughout
this section. I guess that the uncertainty in temperature measurement in the data
presented in this section is less than 20 K. Clearly this situation is unsatisfactory.
The best course is to remeasure the single crystal data so that the results of this

section can be verified.
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Measuring disorder using the peak areas

Shown in Figs. 7.11 and 7.12 are the temperature dependences of the single crystal
PbTiO3 data with € || ¢ and € L ¢. Note that the magnitude of the € || ¢ peak in
the box in Fig. 7.11 diminishes with increasing temperature while the € 1 ¢ peak in
the box in Fig. 7.12 increases with increasing temperature. In Fig. 7.11, the peak
becomes much smaller in the high temperature phase as the local distortions become

disordered.

Normalized Absorption

o. ‘ ‘
4960 4970 4980 4990
Energy (eV)

Figure 7.11: The titanium K edge XANES spectrum of PbTiO; with € || ¢ at several
temperatures in the tetragonal phase and one temperature in the cubic phase.

In a displacive model for the temperature dependence of the PbTiOj3 local struc-
ture the size of the peak in the ¢ polarized data would shrink proportionately to the
titanium displacement, which would be relaxing with temperature into a centrosym-
metric position. The titanium displacement as measured by x—ray diffraction is shown
by the crosses in Fig. 4.9. Above T, the titanium atom would relax completely to a
site of point centrosymmetry and the peak would vanish. The a polarized peak would
grow only slightly due to the increasing thermal distortion parameter. The Einstein
temperature for the titanium—-oxygen bond in PbTiOj is given in Ch. 4 as 582(20) K.

In an order—disorder model, the behavior of the ¢ peak with temperature would
be similar to its behavior by the displacive model. The disordering of the local
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Figure 7.12: The titanium K edge XANES spectrum of PbTiO3 with € L ¢ at several
temperatures in the tetragonal phase and one temperature in the cubic phase.

displacements and local elongations of the c-axis result in 90° rotations of the local
structure. Thus some fraction of the local displacements that were aligned parallel to
€ at lower temperature rotate away from that direction. The ¢ peak thus diminishes.
Similarly, the a peak grows due to some number of local displacements rotating to
an orientation parallel to €. The main difference in the temperature dependence
of the XANES between the two models is that the a—axis grows faster under the
order—disorder model.

Assuming the order—disorder model, the fraction of local unit cells rotated away
from the nominal polarization can be determined from the temperature dependence
of the peak areas. If x is the fraction of local cells rotated

A(T) =(1 — 2)A,(0) % (7.2)
dz A.(T)
T B A0 (7.3)

where A(T) is the area at temperature 7" and A(0) is the area at zero temperature.
To accurately measure the fraction of cells rotated away from this orientation, the
measurements of the areas must be scaled by the by the size of the titanium displace-
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ments at low and high temperature. For this I use the displacements obtained from
the polycrystalline peak areas shown in Fig. 7.8.
Similar expressions can be constructed for the temperature dependence of the a

peaks
2
A(T) =5 A.(0) + ‘fz—g (7.4)
o dy A(T)
e =222 (7.5)

The factor of two in the a peak equations arises from the equivalence of the a and b
axes. When a local unit cell rotates away from the macroscopic ¢ direction, it will end
up in one of the two equivalent a directions. In my experiment, one of these directions
was parallel to the incoming x-ray polarization and one was perpendicular. Note that,
in these equations, I assume that the contribution to the a—axis peak due to the o2
of the titanium—oxygen bond is small as the Einstein temperature was measured to
be 582(2) K.

To measure the area of these peaks, I made two assumptions, both of which seem
reasonable in light of the EXAFS results on PbTiO3 in Ch. 4. The first is that the
disordering is negligibly small at room temperature so that the area of the c-axis peak
at 300 K is the same as at 0 K. The second is that the a—oriented peak measured at
300 K is a good measure of the signal in the 3d region of the spectrum in the absence of
distortion. Using these assumptions, [ made the difference spectra shown in Fig. 7.13
by subtracting the 300 K a—axis data from each of the other oriented, single domain
spectra. I used a trapezoid integration to obtain the area under € || @ difference
spectra. The temperature dependent part of the € || ¢ difference spectra is the peak
centered at 4966 eV. I measured the area under this using the method presented in
Sec. 7.2.

Upon examination of the contents of Table 7.3, it is clear that single crystal
peak areas are not consistent with the interpretation of the local structure presented
elsewhere in this thesis. In fact, these measurements are not even consistent with
one another in the cubic phase. There are several possible sources of error in this

presentation.

1. The interpretation of disordered local displacements or its effect on the single
crystal data is incorrect.

2. The determination of the temperatures as described at the beginning of this
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Figure 7.13: Difference spectra for the temperature and polarization dependent, sin-
gle crystal PbTiO3 Ti XANES spectra. The a spectrum at 300 K was subtracted
from each of the other spectra to create the difference spectra. The dashed vertical
lines indicate the region within which the areas in Table 7.3 were measured. The
temperatures of the measurements of the a— and c-axis spectra are explained in the
text.

Table 7.3: Fractions of rotated cells in PbTiO3; computed using the the single crystal
peak areas and assuming an order-disorder model. The temperatures for the two
orientations are given as described in the text. The area are measured from the
difference spectra in Fig. 7.13 as described in the text. z, and x, are evaluated using
Egs. 7.3 and 7.5. x = % is expected in the cubic phase, i.e the three directions are
equally occupied.

‘ temp. ‘ a area T, ‘ c area T, ‘
300K 0eV 0 0.704(9) eV 0
431K 0OeV 0 0.632(10) eV 0.03(10)

(
568K | 0.011eV  0.05(1) | 0.533(12) eV 0.13(
707K | 0.027eV  0.11(1) | 0.403(13) eV 0.21(

(

830K | 0.060eV  0.28(3) 0.087eV  0.80(2
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section is incorrect. In fact, the values of x appear to be consistent if the

uncorrected temperatures are used for x,.

3. The separation of c-axis contribution from the measured signal as described
in Sec. 3.2.2 was incorrect, resulting in an incorrect evaluation of A.(0). It is
possible to measure these data in a geometry that isolates the c—axis signal and
does not require the data processing used in this thesis.

This analysis may benefit from re—collection of the single crystal, single domain
data using an appropriate measurement geometry and a reliable temperature sensor.
Certainly the assumptions made about the disordering of the local structure, the effect
of disordering on the single domain XANES spectra, and the method of analysis must
be reevaluated. This remains an open question in my thesis.

Measuring disorder using the axis lengths

The relationships between the average a— and c-axis lengths measured by diffraction
and the local axis lengths measured by EXAFS can be written in similar form to
Eqgs. 7.2 — 7.5. The axis lengths of the crystallographic structure are the weighted
average of the local axis lengths where the weights depend on the fraction of local cells
rotated due to the disordering. If a.. and c.,. are the average axis lengths measured
by crystallography and a., and ¢, the local axis lengths measured by EXAFS, then
the fraction of unit cells rotated as measured using the c-axis lengths is

Cor(T) =(1 = x)Cep (T) + waey (T') (7.6)
_ Cer(T) = cor(T)

" = ea(T) = ee(T) (77)

and using the a—axis lengths
10r (1) =(1 = 5)aes (T) + S (T) (7.8)
v :2(acr(T) — ae:(T)) . (7.9)

Cez(T) — ez (T)

In the high temperature phase, I expect to find that z = %, which is the condition of
complete disorder, i.e. that each direction is % occupied.

A measure of the difference in the lattice lengths can also be expressed in terms
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of
cer(T) —aer(T) . 32
() —an(T) + 2 (7.10)
_ 2 Cer (T) — Qep (T)
Tdiff =3 (1 " Cen(T) — aw(yv)) (7.11)

In the high temperature, cubic phase, x in Eq. 7.11 evaluates to % regardless of the
the local axis lengths.

I use the data displayed in Fig. 4.6 to evaluate Eqs. 7.6 — 7.11. The measure-
ments of the number of local unit cells rotated due to the disordering mechanism are
given in Tab. 7.4. In the ferroelectric phase, the various measurements of x agree
at each temperature within their uncertainties although the a—axis measurement is
systematically smaller than the c-axis measurement. They agree within their error
bars with the fractions measured from the peak areas. In the high temperature phase
T, 1s consistent with %, the condition of complete randomness, but z, is not.

The discrepancies between the x, and x. in Table 7.4 indicate the level of sys-
tematic error in the axis lengths determined from the EXAFS measurements. It is
possible that the fitting values in the fits presented in Sec. 4.2 (e.g. the axis lengths
and the Ej’s for the various backscatterers) could be further refined with the con-
straint that z, and x. are more closely consistent. I imagine this constraint would

change the values found in Sec. 4.2, but would not qualitatively change the results.

Table 7.4: Fractions of rotated cells in PbTiO3 computed using the the axis lengths
and assuming an order—disorder model. The fractions z. are computed using Eq. (7.7),
7, using Eq. (7.9), and x4y using Eq. (7.11). The last column is the 02 weighted
average of the three previous columns. The data used to evaluate these equations is
shown in Fig. 4.6.

‘ temp. ‘ T ‘ Ta ‘ T dify ‘ average ‘
450 K 0.000(69) —0.030(34) —0.010(52) —0.013(15)
600 K 0.183(40) 0.099(1 0.155(22) 0.145(43

9)

(19) )
700K | 0.270(99) | 0.159(48) | 0.233(46) | 0.221(56)
730K | 0.372(118) | 0.230(56) | 0.324(41) | 0.309(72)
800K | 0.747(137) | 0.506(60) | 0.667 | 0.627(170)
850K | 0.723(154) | 0.554(70) | 0.667 | 0.639(120)




Chapter 8

THEORY OF XANES

The literature on x-ray absorption spectroscopy (XAFS) traditionally places the
cut—off between the near-edge (XANES) and extended (EXAFS) parts of the spec-
trum at about 20-40eV above the Fermi energy. This distinction is somewhat am-
biguous. As shown below in Eq. (8.1), the x-—ray absorption cross section is related
to Fermi’s Golden Rule, which is a dipole matrix element that can, in principle, be
evaluated at any energy. in that sense, there is no distinction between XANES and
EXAFS. High order multiple scattering (MS) contributes strongly to the XANES and
much less so to the EXAFS. The path expansion described in Sec. 2.1.2 converges to
a good description of the EXAFS in a small number of terms, while a path expansion
may require an enormous number of terms or simply fail to converge in the XANES
region. Later in this chapter, I will suggest the convergence of the path expansion as
an unambiguous criterion for the separation of XANES from EXAFS.

A practical reason for the distinction between XANES and EXAFS is their relative
ease of analysis and interpretation. The EXAFS spectrum can usually be interpreted
by considering the signal from some small number of scatterers. Usually single scat-
tering and low order multiple scattering suffice to analyze the EXAFS spectrum and
interpret it in terms of local atomic structure. As discussed in Ch. 2, EXAFS anal-
ysis is a signal processing problem with a well determined bandwidth. Typically an
analysis of EXAFS can be parameterized with a number of variables which is small
compared to the bandwidth.

Treating the XANES as a bandwidth limited signal and attempting to directly
analyze it by the same techniques as those used in EXAFS analysis is not a promising
approach. The mean free path A of the photoelectron is typically a few Angstroms
at energies in the EXAFS region and will attenuate the contributions to the spec-
trum from very long paths. Even when forward modeling an EXAFS spectrum in
energy space, very long paths can be neglected due to the attenuation by A. In the
XANES region, however, A can be 10’s of Angstroms. Below the energy at which the
photoelectron can excite a bulk plasmon, typically a few 10’s of eV above the Fermi
energy [115], it experiences only intrinsic losses, which are smaller than the loss due
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to the plasmon excitation [116]. This results in a very long mean free path. Further-
more, the energy of the photoelectron in the XANES region is not large compared
to the variations in the potential, thus high orders of multiple scattering will not be
negligible compared to single scattering. Thus the consideration of many atoms and
high order multiple scattering is required to understand the XANES. As the XANES
extends only a few inverse angstroms in photoelectron wavenumber, the number of
fitting parameters required to analyze so many paths would surely exceed the infor-
mation content of the narrow bandwidth signal. Furthermore, the empirical isolation
of the the fine structure y from the absorption spectrum g using a technique such as
that employed by AUTOBK is not reliable in general. Through the steeply rising part
of the absorption edge, the spectrum changes too rapidly to be well approximated by

a spline or similar functional form.

Despite the complexity of the XANES signal, it contains a wealth of information.
As shown in Ch. 7, the XANES spectrum contains information about the local con-
figurational environment about the absorbing atom. The XANES of materials is also
examined for electronic information such as chemical valence and charge transfer.

The prospect of interpreting the XANES using ab initio principles is compelling.

In this chapter, T present a full multiple scattering (FMS) theory of XANES. I
will discuss the path expansion used successfully by FEFF to calculate the EXAFS
and why it can fail in the XANES region. I will then present a development of
the computational method of my FMS code XANES. In the following chapter, I will
present results from the XANES code and discuss the interpretation of the XANES
spectrum in terms of the FMS approach.

8.1 The Multiple Scattering Path Formalism

FEFF has proven successful as a tool for EXAFS analysis by providing accurate the-
oretical fitting standards. It uses a quickly calculated, rapidly convergent expansion
of the free electron propagator to provide a convenient description of a multiple scat-
tering problem in terms of scattering geometries. These calculations provide the
theoretical fitting standards which are parameterized and used in a fit of the sort
described in Ch. 2.

The absorption function measured by an XAFS experiment is related to the tran-
sition rate of the photoelectron from some initial deep core state, |i), to a final state
above the Fermi energy, |f). This transition rate is determined within the one—electron
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and dipole approximations by Fermi’s Golden Rule [117]:

o Y |(fle-xli)[*a(es — e — w). (8.1)

f

In this equation, € - r is the dipole operator for the incident electromagnetic wave on
the system of atoms and electrons. Therefore, i is a dipole matrix element of the
initial core state and the final state restricted to those final states which are accessible
by a incident photon of frequency w. Throughout most of this chapter Hartree atomic
units A =m = e = 1 will be used.

Consider a flat interstitial potential V;,; due to a system of ions and electrons in a
crystal. The ions in the crystal are scattering sites of potential V. The Hamiltonian
for this system is H = Hq + V. A one—particle Green’s function for this Hamiltonian
can then be written as G = 1/(F — H + i(). Using the operator associated with this
Green’s function, Y [f)G(f|, the expression for x is rewritten

f

X —lIm(i|€* -rG(r,r'; E)e - r'[i)O(FE — EF). (8.2)
m

where © is the broadened Heaviside step function assuring that p is non-zero only
above the Fermi energy, i.e. only for incident photon energies that are large enough
to promote the core electron into an unfilled state. This step function is Lorentzian
broadened to account for the lifetime of the excited core hole and experimental reso-
lution.

The G defined above is the full one—electron propagator in the presence of the
scattering potential. G can be expressed in a series by the Dyson equation

G=G"+G'TG". (8.3)

GP is the free electron propagator, G® = 1/(F — Hy +i¢), and T = V + VGT is the
atomic scattering matrix [21,118]. The full scattering matrix is expressed in terms
of the single site scattering matrices t by

T=t+tGC% +tGtGt + - - (8.4)
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Equation 8.3 is solved using Eq. (8.4) and expanded in a Taylor expansion

G = G+ G*tG° + GGG’ + - - (8.5)
= (1-G")"'¢’ (8.6)

The diagonal elements of first term are 1. Thus if all the elements of t are zero, i.e.
if there are no scatterers, then the free atom dipole matrix element is recovered in
Eq. (8.2). G, the free electron propagator, describes the propagation of an electron
from one angular momentum state in one atom to another atom and another angular
momentum state and t describes the scattering from each site. The successive terms
are the successive orders of scattering contributing to the dipole matrix element. The
second term contains the description of all single scattering events wherein an electron
propagates to the scatterer, scatters from it, and propagates back to the first atom.
The third term describes all events involving the scattering from two atoms before
propagating back to the first atom. Higher order terms have similar interpretations.

FEFF explicitly calculates the terms of Eq. (8.5) for all propagations starting at
the central atom, that atom which absorbed the photon and emitted a photoelectron.

G=G.+» Gt;G.+ Y _ G.t;G);t;G, (8.7)

17£0 1,570
7 i#j

+ ) GetiG) G0t G + - -
i, k#0

it
ik

= ) G (8.8)

all possible
paths

G is the free electron propagator between the central atom and some neighboring
atom and G?’j is the propagator between atoms ¢ and j. The sums are over all possible
scattering geometries of each order of scattering. The terms excluded from the sums
are those for the propagation of an electron from some atom back to itself. The
superscript [' denotes some scattering path. FEFF determines all possible scattering
geometries I' within some cluster of atoms centered around the absorbing atom [119].
It then computes G for each I' individually.

FEFF determines the contribution of each scattering path to the total x(k) of the
problem by taking a trace! over azimuthal states of GEf’ 1, for the central atom and

! This trace is for the case of a polarization averaged calculation. FEFF6 can also calculate x for
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the final state angular momentum. For a single scattering path, this is [30]

1
ss ' ss
X7 =Im (exp(Zz&lf)Zlf 1 g Glfm,zfm) (8.9)

where [y is the final state angular momentum, Ry is the central atom, d;, is the central
atom phase shift for angular momentum /;. The contributions to x due to higher
order scattering are computed by similar traces.

8.2 The Full Multiple Scattering Formalism

The large photoelectron mean free path near the absorption edge means that, in
the XANES region, the photoelectron probes scattering paths of very long paths
lengths, including very high order paths which bounce around the atoms within a
relatively small radius of the absorber. As the cluster size grows or as higher orders
of multiple scattering are considered, the number of scattering paths required in a
path expansion grows exponentially [119]. Although the task of enumerating all of
these paths is automated by FEFF and any number of paths can, in principle, be
considered, the path expansion may not be formally convergent near the absorption
edge?. Even a convergent expansion might consume significant resources of time,
computer memory, and disk space. In the XANES region, it may be more practical
to directly compute G using Eq. (8.6).

To accomplish this, T encoded the direct calculation of G into an automated
Fortran program, XANES. In this and following section I will present the theory
of the FMS method, and its application to computation of XANES spectra and of
local electronic densities of state. Elements of FEFF are used to compute G° and T.
Both G® and t are computed in a real-space basis of angular momentum and atomic
position, [LR). The shorthand L = {/, m} will be used throughout this chapter.

8.2.1 The Scattering Matrix

A dimensionless scattering matrix is used

trr o = € sin(6)6(1—1')§(R— R') §(m) 6(m) (8.10)

any path given arbitrary elliptical polarization.

2 The criterion for formal convergence of the path expansion will be discussed in Sec. 8.2.3.
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This dimensionless t matrix lacks the factor of % usually included in the scattering
matrix [47]. The partial wave phase shifts §; are computed by FEFF from free atom
relativistic Dirac—Fock potentials which are overlapped to form muffin tin spheres.
The phase shifts are written to one of the output files of FEFF, phase.bin. The
details of the potentials and phase shifts calculation are discussed in detail in several
references [27,29,119,120]. The Dirac delta functions restrict the t matrix to its
diagonal elements.

The diagonality of the t matrix is due to an approximation used by FEFF to
construct its muffin tin. FEFF uses a spherically symmetric charge density within
the muffin tin spheres. Because of this approximation, the scattered photoelectron
cannot change angular momentum state. This approximation lends computational
efficiency to the code. The product G°t in Eq. (8.6) is made in n? time, where n is
the dimension of the basis, rather than in n? time.

8.2.2 The Free Propagator Matriz

The exact calculation of the outgoing free electron propagator

6ik|1‘—1"|

G'(r,r;E)= ——————
(r,7s B) 4rk|r — 7|

(8.11)
can be a substantial computational barrier to an FMS calculation as it must be
projected onto the angular momentum space of the t matrix.

G® can be expanded about two fixed sites R and R’ as

G'(r,r"; E) Z]L r— R)ji, (' RI)GLL’( )- (8.12)

L,L'

The coefficients are products of spherical Bessel’s function and spherical harmon-
ics J, = i'5(kr)Y(7) and p = p|R — R’| where p is complex momentum of the
photoelectron given in Eq. (2.9).

The Rehr-Albers [30] algorithm is used to compute the coefficients G} ;,(@). The
aim of the Rehr—Albers algorithm is to separate these coefficients into products of

radial and angular terms. The radial dependence is expressed as a fast, accurate
expansion of z-axis propagators. The remainder of this section is adapted from Ref.
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[30] and is included here in enough detail for the reader to reproduce XANES.

6P 1 (p) —e"p DS R, R () (8.13)

=

The R are rotation matrices in an angular momentum basis [117,121] and the ©,
represent the Euler angles (o, 3, ) of the rotation of p onto the Z axis. Expressed in
terms of polar angles, these rotations are €2, = (0,6, 7 — ¢) for the forward rotation
and QTI = (¢ — m, —6,0) for the return rotation.

The gyzl( ) are the Z-azis propagators. These are expanded in terms of special

functions

min(L,l'—|)

g =S Al (8.14)

v=0

The ~-functions are polynomials related to spherical Hankel functions by Egs. (8.15)
and (8.18) below.

Letting n = —i/p, the outgoing spherical Hankel function can be written in terms
of another polynomial, ¢;:

h(p) = —i ' tnet/e(n). (8.15)

The ¢; follow the standard Bessel function recurrence relation:

co(n) =1
01(77) =1-n
casny(m) =ca-1y(n) — 21 +1) - n-a(n) (8.16)

Differentiating the recurrence relation in Eq. (8.16) yields the following relations for

= (9"/0n")
387; [earn(m)] = aan”y [ca-n(m) = 21+ 1) -0 - ()]
¢
clp(m) =cy(m) = 2L+ 1) -0+ (c/(n) + ¢ (n)) (8.17)

i = (-1 - 2
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The 7-functions are

Vi (P) = (—1)“Nl”&TEi7;!nu+u
shot) = AN

(8.18)

where Ny, are the spherical harmonic normalization factors

Ny, =

(2z+1)(zﬂ)!r

A (1l + p)!

For small 7, ¢,(n) — exp (il(l + 1)/2p) - (1 + 1(I + 1)/2p2)% [30,43]. At large
p, the first correction to the asymptotic form of the Hankel function is of the size
of (I +1)/2p [117]. When this correction term is small, the ¢;(n) reduce to plane
waves. If we consider that |p| is about 1-3 in the XANES region and that a typical
cluster size in a calculation is about 5 A, then p is ©@(10'). Partial wave scattering
is important within the “centrifugal barrier”, i.e. for [ such that l,,,; < kRpyr where
Ry, the muffin tin radius, is 1-2 A . Thus a typical Ly, in a xanes calculation is 3.
The correction term is not small and plane waves should not be used in the XANES
region [43].

With this, Eq. (8.14) is solved. The rotation matrices R in Eq. (8.13) are energy
independent and calculated by an iterative technique [117,121]. As the rotation
matrices are independent of energy, they may be calculated once for all pairs of atoms
in the cluster and saved for use at each energy point. Although saving all rotation
matrix elements within a large cluster requires significant computer memory, doing
provides considerable computational efficiency. Finally, Eqs. (8.13) and (8.10) are
used to solve the FMS matrix G by Eq. (8.6) in the |LR) basis.

This approach to calculating G is solved entirely in real space with no assumption
of symmetry or periodicity. Unlike band structure based approaches to calculating
absorption spectra and electronic densities, this method may be applied equivalently
to crystals and non—crystals, including surfaces, biological materials, quasicrystals,
amorphous solids and liquids, and others.

The Rehr—Albers technique is stable, accurate, and quickly convergent compared
with other techniques of computing G° [122,123]. This speed is a significant feature
of the FMS method presented here. Profiling [124] the execution of my XANES code
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reveals that about 16 percent of its execution time is spent evaluating the gl”l,‘(p)
terms for a medium sized problem, such as the boron nitride calculations shown in
Sec. 9.3. This is only a few percentile fewer than the time spent inverting (1 — G%).
As the size of the basis increases, the time spent on the matrix inversion scales faster

than the evaluation time of the gl”l,‘(p) terms. For the copper calculation in Sec. 9.1, 8

percent of the two hour execution time was spent calculating the gl”l,‘(p) terms while
about 50 percent of the time was spent on matrix inversion. Calculating G° is a
significant fraction of the execution time spent on a problem of any size. The speed

of the Rehr—Albers algorithm is a significant feature of XANES.

8.2.8 Matriz Algebra

Solving Eq. (8.6) is a problem of matrix inversion. There are several standard tech-
niques for tackling a matrix inversion. In XANES, I use a Lower—Upper (LU) [125]
decomposition, a speedy, reliable technique for the decomposition of an arbitrary
matrix with no particular internal symmetries, such as triangularity, diagonality, or
sparseness. An LU decomposition can, however, provide an unstable solution for
a singular or nearly singular matrix. In that case, the answer provided by the LU
decomposition can be dominated by numerical error. As an option, XANES can per-
form the matrix decomposition with a Singular Value Decomposition (SVD) [125].
The SVD is slower than LU and requires more computer memory, but provides a
numerically reliable approximate solution for a singular or nearly singular matrix. In
practice an LU decomposition of (1—G°) is usually adequate®. Excellent descriptions
of both the LU and SVD techniques can be found in Numerical Recipes [126].

The solution of Eq. (8.6) is the most significant computational bottleneck of the
FMS technique. The time necessary to solve Eq. (8.6) scales as n® where n is the
number of states |LR) in the problem. The R basis is the number of atoms in the
chosen cluster and the L basis spans all angular momentum and azimuthal states of

3 In fact, I have yet to find a case where SVD and LU give different answers. The SVD is necessary

in a case where the matrix (1 — G%) is close enough to being either row or column degenerate
that computer roundoff error dominates the computation of the decomposition. Even in cases
where the convergence criterion of Eq. (8.20) is not met, the decomposition of the (1 — G°t) is
computationally stable and the LU suffices.
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the atoms in the cluster.

Nstates = Z linaz (ljnaz- + 1) (819)
S Natoms X lmaz(lmaac + 1)

Here [

maz 15 the maximum angular momentum state to be considered for atom 7 and

Imaz 1s the largest angular momentum state considered for any atom in the cluster.
It is clearly advantageous to keep the size of the basis as small as possible without
discarding any important physics.

The rule that the centrifugal barrier, [,,., =~ pRa/r, limits the importance of
the terms in the angular momentum expansion can be used. Here p is the complex
momentum and Ry, is the muffin tin radius of the atom. The energy dependence
of the centrifugal barrier limits the practical extent of the full multiple scattering
approach to a few 10s of eV above the edge. The centrifugal barrier provides a
practical, computational barrier between the XANES and EXAFS regions of the
XAFS spectrum. [, is less than 4 in an energy range extending to about 25eV
above the Fermi energy. If the basis of the FMS calculation is restricted to [ < 3,
then about 25eV is the energy at which the XANES becomes the EXAFS.

The question of the convergence of the path expansion can be addressed by ex-
amination of the matrix Gt. There is a theorem of linear algebra [127] which states

If the moduli of the eigenvalues of all eigenvectors of A are less
than 1, then (1 — A)~" is non-singular, and the series

T+HA+AT A3 ... (8.20)

converges to (1 —A)~"

A Schurr factorization [125] is used in XANES to compute the eigenvalues of G°t. The
applicability of this convergence criterion to the MS XAFS problem is discussed in
Ref. [46].

It would be interesting to examine the convergence properties of (1 — G%). The
following are still open questions about the FMS matrix:

e Are there classes of materials for which (1—G°t) is or is not convergent through-
out the XANES region? Are these classes based on coordination, electronic

properties, element composition, or any other common characteristic?
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e For materials for which (1 — G%) is convergent, how many and what kinds of
paths are required to reach convergence?

e For materials with convergent, (1 — G%), is it more efficient computationally to
use a path expansion or an FMS technique?

e How important is convergence? That is, can a finite path expansion in a mate-
rial with a non—convergent FMS matrix produce physically meaningful results?

8.2.4 Computing x and p

Once Equation 8.6 is calculated, x,,,, the full multiple scattering fine structure, can
be extracted from Gy, ;s (p, E') in a manner equivalent to Eq. (8.9)

) 1
Xrus — Im(exp(?uslf) m [; GL,L’ (p, E):|> X (821)
5(R — Ruumirat) (R — Ryomiyat) (1 — 1) 8(1' — 1) 8(m — m').

The Dirac delta functions restrict this trace to the central atom and to the angular
momentum of the photoelectron final state [;. The trace is over p = 0 terms of the
Green’s function, as indicated by the delta functions in R and R'. The site—projected
x functions used to compute the local densities of state in Sec. 8.2.5 involve similar
traces over different sites. I use this notation to underscore the similarity of the y
functions used the calculation of the XANES and of the densities of state.

The polarization dependence of x,, is extracted from the /; submatrix by pro-
jecting the submatrix onto the polarization vector expressed in an angular momentum
basis. This can be solved for an arbitrary photoelectron final state and for arbitrary
ellipticity of the incoming photon*. For K edges and linear polarization, the projec-
tion of y onto the polarization vector is

Xews (€) < Y €+ Grmion (p) - Em. (8.22)

m,m’

In a XANES experiment the total absorption p(E'), is measured. p(E') contains
both the embedded atom absorption pg [58] and the fine structure x(F'). It is not,
in general, practical to extract y(F) from a measurement due to the difficulties of

4 One would use Eq. B2 of Ref. [27]. The XANES program currently only calculates linear polar-
ization for Iy = 1.
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determining the rapidly varying part of the background function in the real data near
the absorption edge. Consequently, a calculation of j,,,, is more useful than y,,, for

comparison with experiment.

Eq. (8.13) has a prefactor of 1/p and two rotation matrices for the angle between
IR — R'| and 2. G ,(p) is thus ill-defined for R = R'. As an aid in computation,
the elements of G° which are diagonal in the R basis are set to zero. This has the
additional advantage of forcing to zero the contributions to G which propagate an

electron from an atom to the same atom.

The embedded atom background g is obtained by directly evaluating the dipole
matrix element of Eq. (8.1) for the central atom. This is calculated by FEFF at the
same time as the partial wave phase shifts §; and is saved to a file called xsect.bin.
The full multiple scattering absorption cross—section i, is computed from gy and
Eq. (8.21)

Hpys (E) = :U’O(E) (1 + X Fus (E)) (823)

po(E) is computed by directly evaluating the integral in Eq. (8.1) using the deep
core initial state and the final state of the embedded atom, i.e. the neutral atom
within the muffin tin potential. This calculation is performed by FEFF and written
to one of its output files, xmu.dat.

For comparison to experiment, it is useful to allow for adjustments to the Fermi
energy and the line broadening of the calculation. FEFF provides an approximation to
the Fermi energy and uses tabulated values for core-hole lifetimes 7., as a broadening
term. An experiment might be further broadened by monochromator resolution or
electronic effects in the material. The Fermi energy and broadening are included in
the calculation by multiplying the spectrum by a function ©(E) which is zero below
Er and 1 above. This product is then convolved with a Lorentzian £ of a width w.
w is the sum of 7., and an additional broadening chosen to account for experimental
effects.

4§ = L(B,w) ® [O(Er)m(E)| (8.24)
(X i) = LB, w) ® |O(Er) 10 ()5 (B )] (8.25)

His = Ho + (H0Xpuss)© (8.26)
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8.2.5 Local Electronic Densities of State

The electronic density of state (DOS) matrix is related [22, 23,118, 128] to the Green’s
function by

1
o=—-ImG (8.27)

™

We can evaluate the angular momentum projected DOS at each atom centered at R;
in the cluster

TN
o (B)= [ @(lr = R Teu|Ralr — R)Pesmin (B)] (529
0

The radial integral is performed out to the Norman radius of the atom centered at
R. The Norman radius is the radius of a sphere approximating the volume of the the
Wigner—Seitz cell in a crystalline material. The Norman sphere contains a neutral
atom. Rp(r — R;) is the radial wave function centered at R;. The trace is over all
azimuthal states of R, and of the density matrix. Expressed in this manner, g, g(E)
is solved analogously to Eq. (8.23).

or;(E) = QRRZ-(E)(I + Xl,Ri(E)) (8.29)

The fine structure projected onto a specific site ¢+ and angular momentum /¢ is
calculated in a manner analogous to Eq. (8.21)

Xg; = Im(exp(%é&i) 257:—1 [ZGL’L' (p, E)]) X (8.30)
§(R— R) (R — R)6(— 0)8(I' — 0) §(m — m').

The atomic electronic densities for each embedded atom and angular momentum
state are computed directly from the atomic wave functions:

TN 2

/d3(|r _ Ri) Ri(r — Ry, E)

2p-2(20+1
()= 2@
52 s

. (8.31)

The integral is over the embedded atom radial function, which matches to an outgoing
Hankel function at ry. The first factor of 2 is for spin degeneracy, the 2(2(+1) is from



120

the radial average and sum over azimuthal states, and p is the complex momentum.
Eqs. (8.30) and (8.31) are solved and put into Eq. (8.29) for the site and angular
momentum projected DOS. The DOS projected onto a site is

0i(E) =Y 0,,(E) (8.32)
I
the total DOS for the cluster is

o(F) =33 0,(B). (5:33)

8.2.6 Computing the Fermi Energy and Charge Transfer

The Fermi energy for the cluster of atoms in a calculation can be obtained by inte-
grating p from Eq. (8.33) until all valence electrons N, are accounted for.

-y / aE o,,(E) (8.34)

The lower bound on this integral is the bottom of the valence band. In the muffin
tin potential of FEFF7 this is a rather ambiguous concept. The bottom of the valence
band is near the level of FEFF’s interstice, but usually slightly below. The interstice
in FEFF is at the energy of the flat portion of the muffin tin. When FEFF7 constructs
its muffin tin, some of the charge gets pushed below the interstice. To work with
my XANES code, I modified FEFF7 to continue its calculation of g;(E) below the
interstice.

In XANES the number of valence electrons is taken to be the number of free atom
electrons in energy states above the level of the interstice as calculated by FEFF. 1
modified FEFF to write a file containing enough information to determine the number
of valence electrons in the cluster.

The charge and orbital occupancy of a site can be calculated by neglecting one or
both of the summations in Eq. (8.34). The evaluation of net charge can also be split
into central atom and scattering components by separately evaluating the integrals
of 0} g(E) and 0} p(E)x1,r(F). The calculations are shown for boron nitride in Sec.
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9.3.

For an open structure such as boron nitride, it may be necessary to consider that
some valence charge does not reside within the Norman sphere, which was determined
for the free atom. That charge will be accounted for in Eq. (8.29). The effect of the
open structure is that the integral of y; gr(E) will be negative below the Fermi energy.
The charge removed from the Norman spheres is in the open regions of the structure.
For a crystal such as boron nitride, this interstitial volume is calculated by subtracting
the volume of the Norman spheres in the unit cell from the volume of the unit cell.
Treating the electrons in this open region as a free electron gas yields [129]

1% <2m(EF — Eim)>§

Nire = 372 2

(8.35)
where V' is the volume of the open region and m is the electron mass. This value
of N is added to the integral of Eq. (8.34) and Er is found such that Npos + Nyree
equals the number of valence electrons.

8.2.7 Limitations of the FMS Method

The FMS method is not a magic bullet for understanding absorption problems. It

has several limitations.

Limitations of the muffin tin potential
Every approximation used to construct a muffin tin is most severe at low energy.
The effects of a non—flat interstice and of neglecting charge transfer will, then,
be most apparent in the XANES region of the absorption spectrum. The non—
flat interstice can be handled by introducing off-diagonal terms in the t matrix.
This can be quite important for highly anisotropic materials of in materials with
strongly directional covalence at the cost of a sizable increase in computation
time. The effect of using neutral spheres to construct the muffin tin can be
corrected by using the values for charge transfer from Eq. (8.34) to construct a
new muffin tin potential. Doing so is the beginning of a self—consistency loop.

Limited energy range

Because the size of the required angular momentum basis increases dramati-

2

maxy and

cally at higher energies, the size of the computation basis scales as [

the computation time scales as [5 . Thus there is a practical limit on the en-

max"*

ergy range of the technique. At energies in the EXAFS region of the spectrum,
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the size of G becomes a computational burden. Fortunately, the path expansion
converges in a small number of terms in the EXAFS region.

Finite spatial dimension
Since the number of atoms in the cluster scales as the cube of the radius, large
clusters are a computational burden. Limiting the size of cluster neglects the
contribution from paths which leave the cluster. Also, care must be taken to
avoid surface effects in the construction of the muffin tin. This is easily avoided
by constructing the muffin tin with a much larger cluster than is used in the
FMS calculation.

Thermal disorder is incorrectly handled
My XANES code currently neglects thermal disorder. Thermal motion within
the cluster can be approximated by multiplying each element of G by an expo-
nential of the mean square displacement about the value of |R — R/| for that
element. Looking at the expansion of Eq. (8.5), the 0?’s of each leg will be
added. However, consider the following two scattering paths:

—_——

The single scattering path is of total path length R and has a thermal mean
square displacement o2. The triple scattering path is of length 2R. It should
have a mean square displacement of 402, but is given one of 202 by the FMS
technique. Other classes of paths are similarly mistreated by FMS. Fortunately,
the exponential is a function of p?, which is small in the XANES region, so the
mistreatment or neglect of the thermal disorder is generally a small effect.



Chapter 9

XANES SIMULATIONS

In this chapter, T discuss applications of the XANES code to real materials. A
prominent member [130] of the XAFS community recently stated to an audience at
the Ninth International Conference on XAFS that XANES is in a similar state to
that of EXAFS at the first XAFS conference 14 years earlier. At that first XAFS
conference, formal theories and analytical techniques for interpreting the EXAFS
spectrum were in their infancy. Most papers on the topic of EXAFS presented their
arguments in a descriptive, hand—-waving manner. Today EXAFS is a mature and
quantitative spectroscopy, but XANES is still hindered by a lack of rigorous technique.
I make no claim in this chapter to provide qualitative formalism for XANES on par
with what exists for EXAFS. I am confident, though, that what I present is a step
towards that goal. What I present here is the equal of any extant XANES technique in
the scientific literature. Here and in my discussion of future goals in Ch. 10, I present
tools that I hope will help the development of XANES into a mature spectroscopy.

9.1 Copper

Following in a long tradition of XAFS theorists, I will start with a presentation of
a calculation of FCC copper metal. The XANES portion of the copper spectrum is
characterized by a famous' jog half way up its absorption edge. It has been shown
(119, 120] that multiple scattering effects are required to reproduce this effect. With
a sufficiently large cluster, the FMS technique should reproduce this feature.

In Fig. 9.1 I present a calculation of the the XANES spectrum in FCC copper
using the path expansion of FEFF7. The atoms list for the FEFF input file was
created by ATOMS using the FCC structure and an a lattice constant of 3.81. To
make the thin solid line I used the exchange model of Hedin and Lundqvist and chose
input parameters to FEFF to limit the number of paths considered?. to 438 unique

LTt is very common at XAFS beamlines at synchrotrons to calibrate monochromators by setting
the peak of this distinctive feature to the published [131] absorption edge of 8979eV.

2 This was done by setting the length of the longest path considered by the path finder to 8 A using
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scattering paths. The bold solid line uses found 938 unique paths® out of 151,784
total paths. This picture roughly reproduces Fig. 6.3 Alex Ankudinov’s doctoral
dissertation [120]. This is a fairly good simulation of the copper near edge and the
approach to convergence is seen in the improvement between the 438 and 938 path
calculations. To consider a path expansion using a larger value of RMAX would require
careful use of the CRITERIA and PCRITERIA keywords of FEFF.

1.50
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o°

1.00

G ———— \
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H(E) 938 paths

——== B(B)
H(E) 438 paths
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Energy (eV)

Figure 9.1: Copper K near edge structure in FCC copper as calculated by FEFF7 using
the XANES card. The data is transmission XAFS. The this solid line is a calculation
using 438 unique paths out to 8 A and the bold solid line uses 938 paths out to 9 A.
po(E) is given by Eq. (8.23).

The result of a XANES run on FCC copper is shown in Fig. 9.2. The details of
the run are shown in Table 9.1. This calculation takes under two hours of CPU time
on an Indigo IT workstation. We see a substantive improvement in the quality of the
simulation out to about 8995eV. The restriction of the angular momentum basis to
[ <2 in the calculation becomes too severe of an approximation beyond that energy.
Before that energy, the simulation is excellent. I conclude that the shortcoming of Fig.
9.1 is the use of a finite number of paths. Apparently scattering paths which include

the RMAX keyword and by rejecting paths of tiny amplitude by setting the CRITERIA keyword to
0.25 and 0.25 in the FEFF input file.

3 By setting RMAX to 9.
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Table 9.1: Information about each of the XANES runs presented in this chapter. The
“structure reference” column contains the crystallographic information used to make
the input file for FEFF. The “exchange” column refers to the type of exchange-
correlation potential used in FEFF, HL. = Hedin—Lundqvist and GS = Ground State.
The cluster size refers to the number of atoms within R,,,,; from the absorber. The
Fermi energy and additional broadening were applied by CORRECT. The Fermi ener-
gies refer to the energy axes of the appropriate figures and are not meant to indicate
the Fermi energies on an absolute scale.

) structure cluster angular momentum

material reference  exchange R, size shells basis

Cu [129] HL 6.0 A 79 5 Cu:spd

SF [132] GS 2.0A 7 1 S:spd F:sp

BN [133] GS 50A 87 7 B:sp N:sp
PbTiO3 [84] GS 5.0A 45 4 Pb:spdf Ti:spd O:sp

Fermi additional

material  energy  broadening notes

Cu 8978 eV 0 amplitude = 0.9 used in CORRECT

SFg 2485.7eV 0.5eV

ION 0. 1 used in FEFF

BN 195eV L.3eV 1.385 A} interstitial volume per atom

PbTiO; 4964.6 eV 0 300 K tetragonal structure

ION O 1 used in FEFF
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atoms a long distance away from the absorber are less important that the high order
scattering paths that bounce around inside a cluster of limited radial dimension. The
restriction of the path list by half path length excludes high order paths of that sort.
The calculation was much improved by expanding the cluster from four shells to five.
The four shell calculation showed only a shoulder rather than a peak for the feature

half way up the edge.
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Figure 9.2: Copper K near edge structure in FCC copper. The data is transmission
XAFS. uo(E) is given by Eq. (8.23).

The calculation of the Fermi energy as described in Sec. 8.2.6 was not successful
in this case. Fpe.,; was found by XANES to be 8981.4¢eV, 3.4eV higher than the value
I used in CORRECT to produce Fig. 9.2.

There are significant differences in the region between about 8978 and 8993 eV in
Figs. 9.1 and 9.2. Although, there seems to be a slow approach to convergence in
that region between the two path expansion calculations shown in Fig. 9.1, neither
path expansion calculation is a good approximation of the FMS calculation. T used
Eq. (8.20) to determine the possibility of convergence of the path expansion. Shown
in Fig. 9.3 are the largest eigenvalues of G’t. Starting just above the Fermi energy and
extending for about 15eV is a region in which the largest eigenvalues exceed 1 and,
throughout the energy range of the peak in the middle of the edge, 5 to 10 percent of
these eigenvalues are greater than 1. The path expansion is formally non—convergent
in this region. It is possible that an acceptable path expansion calculation can be
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made by consideration of a large number of paths, but that number must greatly
exceed the 938 that I used in Fig. 9.1.

2.5 + o Data b
H(e)

Maximum Eigenvalue

[eX=X=¥=1

1.0 Lt ot 0 00 O

‘8960 8980 9000 9020
Energy (eV)

Figure 9.3: Eigenvalues of G% for copper computed using a Schurr factorization [125]
and compared with the K edge FMS calculation and data. The impulses represent
the largest eigenvalue of that matrix. The matrix (1 — G°t)~! is non—convergent in a
path expansion at energy points at which one or more eigenvalues of G exceed 1.

9.2 Sulfur Hexafluoride

The result of the run on SFg using the example input files shown in Sec. C.1 is shown
in Fig. 9.4A. This is a speedy calculation due to the small cluster size, running in
under a minute on my Pentium 133*. The code reproduces well the white line and
the large peak at 2550eV. The agreement with the data is superior to a calculation
[134] of this same material using the “extended continuum-Xa” method of Natoli,
Benfatto, and others. Still there are approximations in this calculation. The XANES
code operates within the one electron approximation, thus neglects multi—electron

4 The Pentium competes quite well with the Indigo II in terms of speed. However the Indigo II
used for this work has six times the RAM of my Pentium. For large problems, my 32 MB Pentium
is severely hampered by needing to access swap space continuously. This is actually a wonderful
result. Modestly priced personal computers are quite up to the task of these calculations, provided
that they are supplied with sufficient memory.
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excitations. Some of the spectral features in the data may be explained in this way.
Another possible shortcoming of the calculation is how the muffin tin potential is
constructed for a molecule. The fluorine muffin tins are unbounded on the outside
thus are poorly approximated by spherical muffin tins. One way of handling molecules
within a muffin tin scheme is to apply an “outer sphere” potential [134] centered at
the geometric center of the molecule to provide an outer bound to the potentials.
This additional potential is another scattering site and may add structure to the
calculation or slightly shift the peak locations®.

Another possible explanation for the missing spectral features in the calculation
is suggested upon examination of the site and angular momentum projected DOS
functions. The Sulfur d DOS is displayed in Fig. 9.4B. There is a large peak in
this band very near in energy to the large peak in the data at about 2507eV. It
is well-known [136] that nominally octahedral hexafluoride compounds such as SFg
and others are subject to pseudo—Jahn—Teller distortions. Just as the large peak
in the titanium perovskite data shown in Ch. 7 arises from the local distortions of
titanium—oxygen octahedrons, we may expect some sort of hybridization of sulfur p
and d states in SFg due to a displacement of the sulfur atom from the center of the
fluorine octahedron. Evidence is presented in Ref. [132] for the presence of strong ¢y,
and t5,% vibrational modes allowing vibronic coupling of states of p and d character. In
that reference, the authors speculate on the possibility that the pseudo—Jahn—Teller
distortion in SFg is quite large.

To test the effect of a Jahn—Teller type distortion on the calculation I altered the
FEFF input file shown in Fig. C.1 to include a distortion approximating the symmetry
discussed in Ref. [132]. The altered list of atomic coordinates in shown in Fig. 9.5.
The result of the calculation on this structure is shown in Fig. 9.6. The configurational
distortion does introduce a peak at the energy of the peak in the sulfur d DOS. X«
molecular orbital calculation [137] find a vibronically assisted but dipole—forbidden
transition at the energy of that peak.

Including the configurational distortion in the calculation certainly does not fix all
of the problems with this calculation. There are still significant differences between
the data and the calculation, some of which may be due to lacking the many—body

5 Modifying FEFF to compute an outer sphere is a relatively simple problem. The partial wave
phase shifts from the outer sphere could then be used in the calculation of the FMS matrix.

6 See Ref. [136] for some nice diagrams of these two vibrational modes. The #;,, mode involves
anti-parallel displacements of the sulfur atom with planes of 4 fluorine atoms. The t5, mode is a
bending mode involving 4 fluorine atoms in a plane.
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Figure 9.4: (Panel A) Sulfur K near edge structure in SFg. The data is gas phase
transmission XAFS [135]. uo(F) is given by Eq. (8.23). (Panel B) The Sulfur d DOS.
As discussed in the text, the large peak in the d DOS is closely situated in energy to
the peak in the data at about 2507 eV. A distortion induced hybridization of sulfur p
and d states can account for that feature in the data. The result of the calculation in
the presence of a distortion is shown in Fig. 9.5. The vertical dashed line is a guide to
the eye showing the proximity in energy of these features in the data and the sulfur
d DOS.
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ATOMS
x X y z ipot
0.1 0.1 0.1 0 S absorber
1.56 0.05 0.05 1 6 F backscatters
0.05 1.56 0.05 1
0.05 0.05 1.56 1
-1.56 0.0 0.0 1
0.0 -1.56 0.0 1
0.0 0.0 -1.56 1

Figure 9.5: A sample FEFF input file for SFg for use with a run of XANES. The
approximation of the pseudo—Jahn—Teller distortion is included in this input file.

effects or the outer sphere. Still, this result suggests that the FMS approach can be
a useful tool for interpreting the XANES spectrum in structural terms. Additional
computer experiments to probe the response of the calculated spectrum to changes
in structure will be shown in Sec. 9.4. The utility of the simultaneous calculation of
the XANES and the DOS functions is demonstrated in this example.

9.3 Boron Nitride

A calculation on the boron K edge of an 87 atom cluster of BN is shown in Fig.
9.7 and compared to electron energy loss near edge structure (ELNES) data. This
calculation requires about 11 minutes of CPU time on an Indigo II. Despite the use
of spherically symmetric muffin tins and non—self—consistent potentials, I find that
this FMS technique is quite sufficient even for a strongly covalent material such as
BN.

The site and angular momentum projected densities of state g;;(E) are shown
in Figs. 9.8 and 9.9 by the thick solid lines. The embedded atom density gy ;(F)
from Eq. (8.31) are given by the dashed lines. The g,;(E) are compared with the
same functions calculated by a self-consistent linearized muffin-tin orbital (LMTO)
calculation [139], which are the thin solid lines with diamonds (¢). The LMTO
calculations were broadened by convolution with a Lorentzian of 1eV half-width.
Fig. 9.8 also shows g,(E) for the ionized central atom, which is calculated in the
presence of a core hole.

Using the method of Sec. 8.2.6 for computing the Fermi energy was successful in
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Figure 9.6: Sulfur K near edge structure in SFg. The data is gas phase transmission
XAFS. [135] The calculation uses an atomic configuration chosen to simulate a Jahn—
Teller distortion of the sort suggested in Refs. [136] and [132]. po(F) is given by

Eq. (8.23).
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Figure 9.7: Boron K near edge structure in BN. The data is ELNES [138]. Additional
broadening as given in Table 9.1 was added to the calculation to compensate for the
low energy resolution of the ELNES experiment. po(F) is given by Eq. (8.23).
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this case. From the Norman radii of the atoms computed by FEFF (1.041 A for B and
1.010 A for N) and the lattice constant of the cubic unit cell (3.615 A, 4 formula units
per cell), T determined that for each atom in the unit cell of BN, there is 1.385 A3 not
occupied by any atom. This volume is assigned to the interstice and Eq. (8.35) was
used. For the calculation of the Fermi energy, interstitial charge was allowed to reside
in this volume. With this interstitial charge and the DOS functions of Figs. 9.8 and
9.9, a Fermi energy of 195eV was found on the energy axis of Fig: 9.7. Using this
value in CORRECT produces excellent agreement between calculation and experiment.
This value falls within the gap depicted in Figs. 9.8 and 9.9.

The gap is a region where Xl,i(E) ~ —1 such that 0,; = 0. The calculated DOS
functions are broadened by the finite cluster size, the consideration of the core—hole
lifetime, and the use of a lossy potential. Consequently, distinct band gaps, Van Hove
singularities, and other sharp features are absent from my calculations.

Knowing the Fermi energy, I calculate the net charge n; on each atom i

Er
n; = Z/dE Qi,l(E)
l

= Z / dE QOz’,l(E)(l + Xi,l(E)) (9.1)
=n) +n*

These are shown in Table 9.2 for boron and nitrogen. The interstitial charge deter-
mined from the interstitial volume is also shown there. The numbers are reasonable,
although they suggest a more charged nitrogen atom and less charge boron atom than
does the LMTO calculation. Also note that the integer formal valences of +1 for B
and N do not describe the actual charges found within the Norman spheres.

This computation of charge transfer is the end of the first step in a self-consistency
loop. The neutral atoms used in FEFF to compute the muffin tin can be replaced by
these charged atom and new potentials can be generated. This procedure could be
iterated until some desired level of self—consistency is attained.

Finally note the enhanced DOS of the central boron atom shown in Fig. 9.8. That
the integrated area of this function is larger than for the ground state boron atom is
due to the use of an ionized central atom in the FEFF calculation. This is an ad hoc
removal of an electron from the central atom. This was done to enhance the area of
the peak near the Fermi energy for improved agreement with the data. It is my hope
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that such ad hoc additions to the theory would be unnecessary with self-consistent
potentials. Also note the shift downward in energy of the DOS of the central boron
relative to the ground state atom. This is due to relaxation in the presence of the
core hole.

Table 9.2: Charge distribution in the ground state of BN within the Norman spheres.
The units on these numbers are electrons per atom. The LMTO results were ob-
tained by summing the areas integrated up to the LMTO Fermi energy under the
angular momentum projected DOS functions for each atom. The interstitial charge
is computed from Eq. (8.35). nf¢ is the scattering contribution from Eq. (9.1).

‘ free atom embedded atom LMTO n?f ‘

)

Boron 3 2.53 2.13 -0.77
Nitrogen 5 4.20 4.62 -1.00
interstice 0 0.64 0.63

9.4 Lead Titanate

As my final example, I will examine XANES calculations on PbTiOj3. The results of a
calculation using the room temperature crystal structure [84] are shown in Fig. 9.10.
The 4 shell calculation takes 14 minutes of CPU time on an Indigo IT and 17 minutes
on my Pentium.

Before I begin my discussion of Figs. 9.10 — 9.14, T will describe a computational
convenience that I employed to simplify the interpretation of the calculations in this
section. I used the same set of partial wave phase shifts for each calculation in this
section. These phase shifts were computed for PbTiOj3 in a cubic perovskite structure
of lattice constant a = 3.9679 A, which is the cube root of the volume of the 300 K
structure in Ref. [84]. The calculations on differently distorted structures then used
these phase shifts and different atomic configurations. This puts all the calculations
on a common energy scale referenced to a common interstice. To check the validity
of this approximation for the distorted structures, I compared the calculation on the
300 K structure using phases calculated from that atomic configuration and from the
cubic atomic configuration. The differences were much smaller than the differences
between the various calculations presented in this section.
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B sDOS

B pDOS

Figure 9.8: Upper panel: Boron s DOS in BN (I = 0). Lower panel: Boron p DOS in
BN (I =1). The DOS functions calculated by XANES (thick solid lines) are compared
with similar functions computed by an LMTO [139] (thin solid lines with diamonds ¢).
The LMTO calculations were broadened by 1 eV for comparison with my calculations.
0o (dashed lines) is the embedded neutral atom density given by Eq. (8.31). The dot—
dash lines are the DOS functions for the ionized absorbing atom, which is calculated
in the presence of a core-hole. The vertical dashed line is the Fermi energy calculated
by the method of Sec. 8.2.6. The units on the DOS functions are (eV)~'. The arrow
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Figure 9.9: Upper panel: Nitrogen s DOS in BN (I = 0). Lower panel: Nitrogen p
DOS in BN (I = 1). The DOS functions calculated by XANES (thick solid lines) are
compared with similar functions computed by an LMTO [139] (thin solid lines with
diamonds ¢). The LMTO calculations were broadened by 1eV for comparison with
my calculations. gy (dashed lines) is the embedded neutral atom density given by
Eq. (8.31). The vertical dashed line is the Fermi energy calculated by the method of
Sec. 8.2.6. The units on the DOS functions are (eV)~'. The arrow at 173.3 €V marks
the position of the interstice (muffin tin zero).
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The effect of including increasing numbers of shells in the calculation is shown in
Fig. 9.10. It is interesting to note that the bulk of the the peak associated in Ch. 7
with the displacement of the titanium atom from a site of point centrosymmetry is
resolved by the consideration of only the oxygen octahedron. That scattering from
the first oxygen shell produces this structure is the scattering theoretic equivalent to
the molecular orbital theoretic statement that this peak is due to hybridization of
titanium and oxygen orbitals. Including the second shell lead atoms (dashed line)
adds additional structure to the spectrum. Including the third shell titanium atoms
(dot—dash line) adds little new structure. Including the fourth shell oxygen atoms
(thin line with diamonds ¢) resolves the peak at 4979 eV and most of the next peak
as well. Including the fifth shell titanium atoms (thin line with crosses +) adds no
new structure to the calculation.” Adding the sixth shell oxygen atoms (short dashed
line) resolves the peak at 4987 eV. Beyond this energy the restriction of the angular
momentum basis as indicated in Table 9.1 becomes a suspect approximation. The size
of the basis required for a convergent expansion in partial waves scales according to
the size of the “centrifugal barrier,” [,,,, ~ krpy;. The peak resolved by the addition
of the sixth shell is about 25 eV above the Fermi energy, or at about 2.6 A~!. Taking
the muffin tin radius of the central atom from FEFF, r,,;, = 1.45 A, gives lpa: ~ 3.7.
Data structures in XANES are currently dimensioned for consider [ < 3, so ~ 25eV is
the practical limit of the calculations using the current code.

This sort of structural interpretation of the XANES is not so convenient as an
analysis by path expansion. Still, this sort of analysis is useful. In this case, it
underscores the importance of scattering from the oxygen atoms in determining the
nature of the XANES spectrum. This is a particularly interesting result given that
the contribution from oxygen atoms is weak in the EXAFS region, particularly at
high k. The fourth shell oxygens contribute weakly to the EXAFS and the sixth shell
even more so. Nonetheless, scattering from the oxygen atoms are the predominant
source of structure in the PbTiO3; XANES spectrum. This is understandable as the
scattering of the oxygen atoms is strong at low k£ and weak at high k while the

7 Others working on the problem of computational near edge structures in titanium oxide per-
ovskites have suggested that a cluster of 51 atoms including the central titanium, the eight sur-
rounding lead atoms and the six surrounding titanium—oxygen octahedrons is essential to a good
calculation. [140] Using the fast potential calculation of FEFF allows my code to separate the ef-
fects of muffin tin construction from the effects of different scattering contributions. The result of
Fig. 9.10 shows that a spherical cluster is sufficient for computing the scattering contributions. In
an explicit test, I observed only subtle differences between the 4 shell calculation and a calculation
using the 51 atom cluster.
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scattering from heavy atoms is much stronger at high £.

The tetragonal elongation and distortions in PbTiOj3 lead to its interesting ferro-
electric and thermodynamic behavior as well as to its interesting absorption spectrum.
With XANES we can alter these structural features and observe their effects on the
calculated spectrum. Fig. 9.11 shows the results of three calculations. Each uses the
lengths of the tetragonal axes, but varies the magnitude of the displacements of the
titanium and oxygen atoms. Each is calculated using 4 shells. The solid line is for
the fully distorted structure and is the same as the thin line with diamonds in Fig.
9.10. For the short dashed line the titanium and oxygen displacements were relaxed
to zero. For the long dashed line, the displacements were set to % of their full values.
In the high energy end of the calculation, the oscillations for the undistorted structure
are enhanced, as is expected in the absence of structural disorder. In contrast, the
peak just above the Fermi energy is enhanced by the structural distortion. This is in
agreement with the observed behavior of PbTiO3 and EuTiOj;.

Fig. 9.12 shows x(E) as calculated by Eq. (8.21) before convolving according to
Eq. (8.25). Most of the enhancement of the peak just above the Fermi energy is
clearly seen as a scattering effect. The peak in x corresponding to the peak in p is
shown to grow with the distortion.

Fig. 9.13 shows the p DOS of both the central titanium atom and of a ground
state titanium atom. Again the effect of the distortion is seen both in the growth of
the peak in central atom DOS in the upper panel of Fig. 9.13 and in the ground state
DOS in the lower panel. The energy shift of about 9eV between these two sets of
DOS functions results from relaxation due to the presence of the core hole. The peak
below the Fermi energy is presumably the top of the valence band. In most of the
energy range, the effect of the distortion is to damp the oscillatory part of the DOS.
The distortion clearly enhances the portion of the DOS probed by the photoelectron
just above the Fermi energy.

Now I examine the effect of the tetragonal elongation on the XANES spectrum.
Fig. 9.14 shows two calculations. The solid line is, once again, the calculation using
the crystallographic structure. The dashed line is a calculation using a cubic structure
of lattice constant ¢ = 3.9679 A but with the same fractional displacements for the
titanium and oxygen atoms as in the published crystal structure. The effect of the
lattice constants is much less pronounced than the effect of the distortions.

Finally T demonstrate a calculation of polarized XANES spectra. Fig. 9.15 shows
the polarized, single crystal PbTiO3 data from Ch. 7 at room temperature along with
the polarization dependence of the calculated spectrum on six polarization shells.



138

1.5 ‘
S13 Ry
s |
Q 1
B 10+ |
< 1
'C) |
q_) |
N 0.8 - |
< |
o | — 1 shell (O)
O 05 } ——- 2 shells (+Ti) |
= i —-— 3 shells (+Pb)
1 &—= 4 shells (+O)
0.3 ‘ +—+ 5 shells (+Ti) 1
---- 6 shells (+O)
0.0 === ‘ ‘
4960 4970 4980 4990 5000

Energy (eV)

Figure 9.10: Titanium K near edge structure in PbTiO3. The data is transmission
XAFS. Plotted in this picture are the embedded atom background and the calcula-
tions on 1-6 shells about the central atom using the structure of Ref. [84]. puo(E)
is given by Eq. (8.23). The cluster in the 1-shell calculation is the central titanium
atom and the surrounding oxygen octahedron. Each subsequent calculation includes
the next coordination shell about the central titanium into the cluster. The atomic
species of each shell is given in parentheses in the legend of the figure. The vertical
dashed line is the Fermi energy.
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Figure 9.11: Titanium K near edge structure in PbTiO3. The data is transmission
XAFS. The solid line is the XANES calculation using the room temperature crystal-
lographic structure from Ref. [84]. The long dashed line is a calculation on this same
structure, but with the tetragonal distortions of the titanium and oxygen atoms re-
duced by % The short dashed line is a calculation with the tetragonal distortions
set to zero. The cell axis lengths are the same in all three calculations. The vertical
dashed line is the Fermi energy.
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Figure 9.12: Titanium K edge x(E) for PbTiO3. This is the x function of Eq. (8.21)
before convolving according to Eq. (8.25). The line types represent the same sequence
of calculations as in Fig. 9.11. The vertical dashed line is the Fermi energy.
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Figure 9.13: Titanium p DOS functions for the central (top) and ground state (bot-
tom) atoms. The line types represent the same sequence of calculations as in Fig.
9.11. The thin line is the embedded atomic density. The vertical dashed line is the
Fermi energy. The units on the DOS functions are (eV)™'.
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Figure 9.14: Titanium K near edge structure in PbTiO3. The data is transmission
XAFS. The solid line is the XANES calculation using the room temperature crystallo-
graphic structure from Ref. [84]. The dashed line is a calculation using cubic cell axes
but with the tetragonal distortions of the titanium and oxygen atoms. The vertical
dashed line is the Fermi energy.

Since this is a K edge and linear polarization, Eq. (8.22) is used. XANES does a good
job of reproducing most of the spectral features for both polarizations, including
the polarization dependence of the peak just above the Fermi energy. As with the
polycrystalline calculation, the peak in the data at about 4970eV is absent from the

calculation.
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Figure 9.15: Titanium K near edge structure in single crystal PbTiO3. The exper-
imental and calculated spectra for € || ¢ are shown in the upper part of the figure.
The lower traces are the experimental and calculated spectra for € 1 ¢ The data
is fluorescence XAFS. The calculations use the room temperature crystallographic
structure from Ref. [84] and six coordination shells. The vertical dashed line is the
Fermi energy.



Chapter 10

SUMMARY AND FUTURE WORK

In the first part of this thesis I demonstrated that two oxide perovskites, PbTiO3
and BaTiOg, possess a significant order—disorder component to their ferroelectric and
structural phase transitions. This is a novel result as both of these materials have
historically been described as being of the displacive type. In the second part of this
thesis, I presented an approach to full multiple scattering (FMS) ab initio calculations
of x-ray absorption near edge structure (XANES). The algorithms described were
encoded in a computer program, XANES, and the successful use of the program on a
variety of materials was shown.

In this final chapter, I will summarize my results on PbTiO3 and BaTiO3 and their
implications to our understanding of the phenomenon of ferroelectricity. 1 will also
discuss the role that FMS calculation of XANES can play in further understanding
ferroelectric and other materials. I will conclude by discussing how the work in this
thesis can be advanced and what projects I hope to work on in coming years.

10.1 The Implications of this Work to Ferroelectricity

My XAFS measurements on PbTiO3 and BaTiO3 demonstrate that the local struc-
tures of these two materials are dominated by an order—disorder mechanism, although
both show a small displacive component as well. In PbTiO3 the local structure re-
mains tetragonal with its oxygen octahedron displaced relative to the lead cage and
the titanium atom displaced from the midpoint of the two axial oxygen atoms. The
phase transition to the cubic phase at 763 K is thus due to a disordering of the local
tetragonal units over a short length scale. This length scale is longer than the 5 A
measured in my EXAFS analysis and must be shorter than about 30 A, the approxi-
mate spatial resolution of the neutron diffraction measurement of Ref.[90]. The small
displacive component of the transition is apparent in the temperature dependence
of the local structure and of the distortion parameter as shown in Figs. 4.9 and 7.8.
In BaTiO;3 the titanium atom remains displaced approximately in a rhombohedral
(111) direction at all temperatures. The sequence of phase transitions are due to



144

the eight-site disordering as suggested by Bersuker [102] and Comes et al. [100].
The small displacive component to these transitions drives a slight shortening of the
rhombohedral displacement as shown in Fig. 7.3.

For years, evidence has mounted suggesting that an order—disorder mechanism
dominates the local structures of these and related materials. Recent EXAFS anal-
yses of KNbO; [12], KTag91Nbg 09O3[13-15], NaTaO3[16], Nagg:Ko.15TaO3[16] and
PbZrO;3[17] have shown that the local structures in those materials are predomi-
nantly of the order—disorder type. In PbTiOj3 several recent measurements, includ-
ing refractive index measurements [87], Perturbed Angular Correlation Spectroscopy
[88,89], and single-crystal neutron diffraction [90] have shown evidence of a disor-
dering phenomenon near the tetragonal to cubic phase transition. In BaTiO3, also,
measurements of infrared reflectivity [7], cubic phase x-ray diffraction [8], electron
spin resonance [9], and impulsive stimulated Raman scattering [10,11] have sug-
gested the importance of the eight—site model in that material. Furthermore, recent
first principles calculations [93,104] of the phase transitions in these materials have
found theoretical evidence of disordering behavior in the high symmetry phases of
both PbTiO3 and BaTiO3. Lacking for both of these systems was the sort of direct
measurement of the local structure with sub-Anstrom scale spatial resolution and
femtosecond temporal resolution that XAFS can provide. That direct evidence is
provided in this thesis. Specifically, I have shown that the local structure of PbTiO3
remains tetragonally distorted in its high temperature phase and that the local struc-
ture of BaTiO3 remains rhombohedrally distorted in all of its phases. For BaTiO3, I
have further shown that the eight-site model must be modified such that the minima
in the local potential surface occupied by the titanium atoms are located slightly
off the rhombohedral (111) axes. In particular, I found that the local displacement
vector of the titanium atom in BaTiOj3 is 11.7(1.1)° away from the (111) axis towards
the c-axis in the tetragonal phase.

While our results clearly demonstrate the presence of local distortions both be-
low and well above the ferroelectric to paraelectric transition in both PbTiO3 and
BaTiO3, many thermodynamic and lattice dynamic properties of these material such
as the soft mode are well explained by a displacive model. This is not a contradic-
tion. In a recent work [105], Girshberg and Yacoby present a theory of ferroelectricity
which considers the coupling between local displacements and the soft mode. As ob-
served by Stern and Yacoby [141], the soft mode is a collective displacement within
a crystal and thus different from the local displacement measured by XAFS. This
theory successfully explains the soft modes of PbTiO3; and KNbQOj in the presence of
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the measured local displacements in those materials. The central peak [86] of PbTiO3
is explained quantitatively by this theory and the soft modes of both materials are
found to be normally damped and with frequencies that do not vanish at T, as ob-
served in experiment. Given the many similarities between KNbO3 and BaTiOg, I
suggest that the model of Girshberg and Yacoby applies as well to BaTiO3.

It is important to understand the Raman spectrum of PbTiO3 and BaTiOj3 in the
context of these results. The temperature dependence of both Raman spectra [1, 2]
clearly show the behavior expected if the local structure is the same as the average
crystallographic structure in each of the phases. The critical difference between the
XAFS and Raman measurements is their time scales. The lifetime of the Raman
excitation is around 102 sec while the lifetime of the XAFS excitation is determined
by the lifetime of the core hole vacated by the x-ray, about 1.5 x 107" sec. I suggest
that the titanium atoms hop between the various sites allowed by the order-disorder
model in each phase on a time scale between the Raman and XAFS lifetimes. Thus
the XAFS measurement is a snapshot of a dynamic system that is temporally averaged
by the Raman measurement. This hopping explains the observation of disordering
behavior in the measurements mentioned above and does not contradict thermody-
namic properties of BaTiO3 which average over time scales much longer than the
hopping time.

The thermal diffuse scattering results of Holma, et al. [142] on BaTiOj; also
merit comment. They found superior agreement to their data with Hiiller’s model
of dynamic correlations [103] than with Comes’ simple application [100] of eight-site
static disorder. We suggest that dynamic correlations in the motion about the disor-
dered atom positions coexist with hopping between the disordered sites. Recent first
principles calculations [143,144] of BaTiO3 show exactly this behavior and may be
sufficient to account for the observed profiles of the diffuse sheets. A re-examination
of Holma’s data in the context both of these first principles results and of the theory
of Girshberg and Yacoby is merited.

The presence of distortions to the local structures of PbTiO3, BaTiO3 and other
materials suggests several fundamental questions about ferroelectric materials that
should be addressed in the future:

e Are local distortions in high symmetry phases a universal feature of ferroelectric

materials?

e Given that PbTiO3 and BaTiOj3 are ferroelectric while EuTiOj is not, what is
the correlation between chemistry and ferroelectricity?
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e What is the role of charge transfer in the XANES structures of the perovskite
materials and how is charge transfer related to ferroelectricity?

e What is the temperature dependence of the correlation between disordered local
structures and what is the length scale of this correlation in the high tempera-
ture phase?

e What is the dependence of the local distortions upon hydrostatic pressure and
do the local distortions persist into the pressure induced high symmetry phase?

e Do the local distortions change for very small particle size?

10.2 The Role of FMS XANES Calculations in XAFS Research

The XANES spectrum contains a wealth of electronic and structural information
about materials. Currently, there is no systematic, rigorous way of extracting all
of this information. Much of the literature on XANES measurements handles these
spectra in qualitative, empirical fashion. Presented in Chs. 8 and 9 of this thesis is a
new computer program, XANES, for full multiple scattering ab initio calculations of
x-ray absorption near edge structure. XANES is by no means a finished work, but it
represents a significant advance towards a goal of quantitative, rigorous analysis of
XANES spectra.

The prospect of extracting electronic information from XANES spectra is quite
exciting. XANES computes the absorption spectrum and the local electronic densities
of state simultaneous. It uses a core—hole and performs the calculation in real space,
thus does not require periodicity of any other symmetry. Electronic information such
as valence, charge transfer and the location of the Fermi energy is thus available
even for non—crystalline materials. Even for crystalline materials, this approach is
preferable to band—structure based approaches. Since the calculation is made in the
presence of the core—hole, it may be directly compared to an absorption experiment
without resorting to an empirical rule—of~thumb to account for the energy shift due
to the core—hole.

Ab initio calculations are of particular value for certain experimental situations
where the interpretation of the XANES spectrum is particularly indirect. For ex-
ample, if the absorbing atom in some experiment resides in distinct crystallographic
sites, the different sites may be of different valence and even possess different Fermi
energies relative to the core-hole energy. Since the XANES experiment measures a
linear combination of all crystallographic sites, the interpretation of this signal can
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be quite obfuscated. Independent calculations of the two sites, both in the presence
of the core—hole, are of obvious value.

For many materials of highly disordered local structure, the extent of the EXAFS
signal is small and, due to the large disorder, difficult to interpret. Examples of such
materials are catalysts, biological materials, amorphous solids and liquids, quasicrys-
tals, and others. Often the only source of structural information about a disordered
material is its XANES spectrum. With a reliable computational tool, different local
environments can be used in calculations and compared to the experiment. In this
way information about coordination and symmetry can be extracted from the data.

In Ch. 7, T showed XANES spectra of PbTiO3 and BaTiO3 and interpreted them
in terms of the local structure. Specifically, I related the area of a particular peak in
the XANES spectra to the magnitude of the displacement of the titanium atom from
its site of point centrosymmetry. In Sec. 9.4 T showed a direct link between the peak
size and the magnitude of the displacement used in the calculation.

XANES allows the user to perform “experiments” that are not possible in na-
ture. Varying the positions of atoms as mentioned above is one of these experiments.
Changing the atomic species of the backscatterers and the ionization of the central
atoms or of certain backscatterers are two others. The contributions to the spectrum
due to different individual scatterers or different scattering shells can be investigated
as can the contributions of differently size angular momentum bases.

In Sec. 8.2.6 T discuss calculations of charge transfer and mention the possibility
of self—consistent muffin tin potentials. This may have significant impact on EXAFS
analysis. In Chs. 4 — 6, I discussed the need to use phase and amplitude corrections in
the EXAFS analysis to account for the error in FEFF’s fitting standards due to the use
of neutral atomic sphere when constructing the muffin tin and other approximations.
These corrections most often enter into the analysis as multiple Fy variable parameters
[50]. It would be quite a boon to EXAFS analysis to remove the need to introduce
multiple phase corrections to the fit. Self-consistent potentials may go a long way
towards fixing this source of error in the FEFF calculation.

10.3 Future Work

I wish to end this tome by describing several projects that I hope to pursue in the

coming years.

Further study of BaTiO3
In Fig. 5.1 T show the close proximity of the titanium K edge to the barium
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Lyrr edge and discuss the difficulties in analyzing the titanium K edge signal
due to the narrow band width. This is an unfortunate occurrence as the ti-
tanium signal, with its significant multiple scattering contribution in the third
shell, would be much more sensitive to the differences between the various pos-
sible local structures used as fitting models in Sec. 5.2. Using the Diffraction
Anomalous Fine Structure (DAFS) [145,146], it is possible to separate the fine

structure signals from the titanium and the barium.

DAFS has been used to separate the fine structure due to inequivalent crystallo-
graphic sites of the same atomic species [147,148]. By modifying that approach,
the fine structures from different atomic species with nearby absorption edges,
as is the case in BaTiO3, can be isolated and analyzed separately. This will pro-
vide the final missing piece of information about the local structure of BaTiOj.
This is a project that I will be doing in the year following my graduation as
a postdoctoral fellow at the National Institute of Standards and Technology
(NIST).

Further study of transition metal oxide perovskites

Fig. 10.1 shows the over—plotted XANES spectra of five titanium perovskites.
There are several systematic differences among these spectra. The non ferro-
electric perovskites EuTiOz, CaTiO3, and SrTiO3 not only lack the %d peak,
but the swiftly rising parts of their edges are shifted about 2 eV higher in energy
compared to PbTiO3 and about 1eV compared to BaTiO3. The location of the
swiftly rising part of the edge is where the local electronic density of state for the
[ = 1 final state of the photoelectron becomes large. The connections between
ferroelectricity, the A cation, and the width of the gap between the Fermi energy
and the swiftly rising part of the edge are not currently understood. Further
study, including application of my XANES code to the materials, is necessary.
Also the peak around 4970 eV is different in the tetragonal PbTiO3 compared
to the other materials. The physical origin of this peak and its relation to the
local structure merit further investigation.

Non—perovskite ferroelectrics
The wide—spread success of the order—disorder model in describing the behavior
of the local structure in oxide perovskites suggests the possibility that order—
disorder is a universal feature of ferroelectric materials. There are many ferro-
electrics of non-perovskite structures. One of these, solid solutions of germa-
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nium in lead telluride, has been the subject of recent first principles calculations
of its ground state structure and phase diagram [149]. An earlier EXAFS study
[150] found evidence of order—disorder behavior of the germanium distortion. I
hope to pursue XAFS studies in this and other materials with the aim of inves-
tigating the hypothesis that disordered local structure is a common feature of
the paraelectric phases of all ferroelectrics.

FMS Calculations of Hybridization
In molecular orbital (MO) theory, a hybridized state is a state arising from
the overlap of atomic states, possibly of different angular momentum, of neigh-
boring atoms in a crystal. As discussed in Sec. 7.1, hybridization can open
otherwise unavailable channels for the dipole excitation by mixing character of
the appropriate angular momentum from nearby atoms with empty states of
the absorbing atom. In the MO picture, this is what happens in both PbTiO3
and BaTiO3;. Some p character from the oxygens is mixed with the large un-
filled d density of the titanium atom leading to the appearance of the peak just
above the Fermi energy. This hybridization is driven by the displacement of the

titanium atom from a site of point centrosymmetry.

Hybridization can be calculated within the FMS formalism by using the Lippman—
Schwinger equation [21]. In a scattering problem, a wave packet propagates
through space and is scattered by the potentials of the neighboring atoms. If
¥(l; R) is an atomic wave function at site R and of angular momentum [, then
the wave function in the presence of the scatterers is

U(l; R) = (l; R) + G"Ty(l; R) (10.1)

Expressing the T-matrix in terms of single site t matrices as in Eq. (8.4) and
solving this as a Taylor expansion yields

U(;R) = (1-G%) "y(; R) (10.2)

As discussed in Sec. 8.2.3, the matrix (1—G°t) is decomposed by a Lower—Upper
decomposition as a matter of course while calculating G. It is a simple task
to obtain the matrix inverse from the decomposed matrix [125]. The atomic
functions ¢ (I; R) are used already by XANES to compute the electronic densities
of state. Thus all of the information needed to compute ¥(l; R) is already in
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the code.

Using Eq. (10.2), ¥(/; R) is calculated in the full |[LR) basis of the G-matrix.
The hybridization amplitude £ between state [ of the central atom R = 0 and a

state of angular momentum [’ of another atom at R’ is computed from ¥(/; R)
by

§o=v; - V(; R) (10.3)

Here ¢ denotes the state I’ and R’ in the |LR) basis. For example, in PbTiO;
or BaTiOj3 the ¢’s of interest might be those corresponding to the p states of
the oxygens in the octahedron surrounding the central atom or the p state of
the central atom itself.

With these quantities, the entire application of MO theory to x—ray absorption
spectra is cast into the language of scattering. It will be interesting to observe
the dependence of the hybridization intensities on the magnitudes of the atomic
displacements that drive them. In particular, it will be interesting to determine
in a quantitative manner which hybridizations lend significant spectral weight
to the XANES features which depend strongly on atomic displacements.

Self—consistency and corrections to the muffin tin potential

As mentioned in Sec. 8.2.6, using the local electronic densities of state to com-
pute charge transfer between the ion in the solid is the end of the first step of a
self—consistency loop. The Laplace equation is solved with the charge densities
of the newly populated ion to yield new ionic potentials. These ionic potentials
can then be overlapped to form a new muffin tin and partial wave phase shifts
can be calculated using these mew muffin tin potentials. This cycle can be
iterated until some level of self—consistency is attained. This work is, in fact,
already under way [151]. The muffin tin potential can be further corrected by
allowing for non—spherical tins. This is accomplished by allowing off-diagonal
elements of the t-matrix, thus allowing a wave to scatter into a state of a dif-
ferent angular momentum. This would significantly expand computation time.
Having a diagonal t-matrix allows the product G°t to be computed in n? time,
while non-spherical muffin tins would cause this calculation to take n® time.
Fortunately the current code is sufficiently fast that adding another n3 calcula-
tion would still allow for reasonably timed calculations.
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Further Development of ATOMS
The program ATOMS, described in Appendix B, has proven to be a valuable
tool for theoretical and experimental XAFS studies on crystalline materials.
Its utility can be expanded in several areas.

e The part of ATOMS which interprets space group symbols is based upon the
1969 edition of the International Tables of X-Ray Crystallography. The
1989 edition somewhat modifies and expands the Hermann-Maguin nota-
tion to accommodate all possible settings of low symmetry space groups.
ATOMS needs to be modified to understand all symbols offered in the 1989
edition.

e ATOMS can be easily modified to perform a variety of chores useful for
DAFS, including the calculation of the atomic portion of the structure
factor using the non-resonant scattering factors of Cromer and Mann [152]
and the anomalous corrections' of Cromer and Lieberman [152].

e With tables of scattering factors, AToMS has all of the information needed
to simulate powder diffraction profiles.

! More modern calculations of the anomalous corrections are available. One current interest among
the developers of FEFF is the calculation of the anomalous corrections for embedded atoms, thus
anomalous scattering corrections, including valence electron effects, can be tailored to the material
under study.
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Figure 10.1: Titanium K edge XANES spectra of PbTiO3, BaTiO3, EuTiO3, CaTiOg,
and SrTiOs3. The spectra of the non—ferroelectric materials, EuTiOz, CaTiO3, and
SrTiOs3, not only lack the 3d peak above the Fermi energy but also have the quickly
rising parts of their edges shifted upwards by about 2eV relative to the PbTiO;
spectrum. Also the shape of the peak around 4970eV is different for the tetragonal

PbTiO3 than for the other materials.
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Appendix A

CRYSTALLOGRAPHY BASED FITTING MODELS IN
FEFFIT

FEFF’s path formalism provides a natural approach to the analysis of an EXAFS
problem. FEFF computes the contribution to the EXAFS from each scattering ge-
ometry within a cluster of atoms. The total fine structure then is the sum of the
contributions from all calculated scattering geometries. A fit to data using these
calculations as fitting standards can be parameterized in terms of the path geometry
for both single scattering (SS) and multiple scattering (MS) paths.

This appendix is not intended as documentation on the use of FEFFIT. For that,
please consult the document[52] distributed with the program. The methods de-
scribed here may be considered advanced applications of FEFF and FEFFIT. In writ-
ing this appendix, I have assumed that the reader is closely familiar with the basic
operations of ATOMS, FEFF, and FEFFIT. Specifically, I have assumed that the reader
understands the use of math expressions in FEFFIT, knows the purposes of the various
output files from FEFF and is familiar with basic concepts of Unix filesystems.

FEFFIT [153] provides a general framework for fitting EXAFS data. In the FEFFIT
input file, a path is defined by a path index and all path parameters associated with
that index. Throughout this appendix, I will refer to a path paragraph as the set of
all path parameters sharing a common index. The path parameters known to FEFFIT
are shown in Table A.1. The path parameter path is used to denote the path to and
name of the file containing FEFF’s calculation of the effective scattering amplitude
and phase shift for that path. id is a comment string that will be written to the
various output files of FEFFIT. The remaining seven path parameters describe the
variables in the EXAFS equation Eq. (2.10) and in Sec. 2.1.3.

This scheme suggests an immediate pitfall. As discussed in Sec. 2.3, the range
of data available in an EXAFS experiment imposes a natural bandwidth limiting the
information content of the signal. If seven quantities are varied for each path in a fit
and many scattering paths are considered, the number of variables may vastly exceed
the available information. To handle the requirements of the path parameterization,
FEFFIT allows every path parameter to be described by a math expression. This
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Table A.1: Path parameters available in FEFFIT.

name ‘ symbol ‘ description

path The name of the feffnnnn.dat file for this path

id A text string describing the path

s02 S2 | An amplitude

e0 Ey A shift of the energy reference

delr AR | A change in the total path length

sigma?2 o? A relative mean squared displacement of the path length
third Cs A third cumulant about the path length

fourth Cy A fourth cumulant about the path length

ei E; A change in the effective mean free path

math expression can simply be a value or it can be a function of variables defined
elsewhere in the FEFFIT input file. It is useful to think of the content of the FEFFIT
input file as a macro language.! This appendix is not an exhaustive explanation of
that syntax, but it is an example of a sophisticated use of FEFFIT for a complicated
fitting problem.

The trick to using FEFFIT effectively is to choose a robust set of variables. Using
the math expressions, physical constraints can be built into a fitting model. These
constraints may reflect the physical and structural properties of the material under
investigation and, if well chosen, will result in loosely correlated variable parameters
with small uncertainties in their optimal values.

The rest of this appendix will describe my approach to fitting PbTiO3, BaTiOg,
and EuTiO3 with examples culled from the FEFFIT input files which I used to analyze
the data shown in Chs. 4 — 6.

A.1 A Fitting Model for Tetragonal PbTiOj3

As discussed in Ch. 4, the purpose of the examination of PbTiO3 in this thesis was to
distinguish between the displacive and order—disorder models of its phase transition
at 763 K. To do this I constructed two fitting models for analysis of the temperature

!Tn computer science, a syntax such as FEFFIT’s is called a metalanguage. Metalanguages are the
product of a high level programming language, in this case Fortran 77, which is used to encode
the syntax of the metalanguage.
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dependent data. One fitting model used the crystallographic parameters of the low
temperature, tetragonal phase as fitting variables. For comparison, I fit data in the
high temperature phase to a model of cubic local symmetry. The method of fitting
to a cubic local symmetry is described in Sec. A.3 for EuTiOj3 and is identical to that
used for the cubic PbTiO3; model.

The geometries of the various scattering paths considered in my fits to the PbTiO;
data are entirely determined by the space group of the crystal and a set of five crystal
parameters used to describe the structure of PbTiO3. These crystal parameters are
shown in Table 4.4. Had I found that a displacive model described the local structure
of PbTiO3 through its tetragonal to cubic transition the lengths of a and ¢ would
have converged with increasing temperature and the three tetragonal displacements
would have all gone to zero.

The five crystallographic parameters in Table 4.4 were the variable parameters in
my fits to the data. Included in the fitting range were 18 unique scattering paths
including 11 double and triple scattering paths. In this section I will describe how
I related the path lengths for all 18 paths and the scattering angles of the nearly
collinear scattering paths to the set of five crystal parameters. I will also discuss
parameterization of phase corrections E, and mean square displacements o2 for the
MS paths.

A.1.1 FEvaluating the Path Parameters for PbTiOg

Figure A.1 shows the ATOMS input file for the tetragonal phase of PbTiOj3 using
the parameters in Table 4.4. From the coordinates of the four unique sites and
the symmetry properties of the space group P4 M M, the initial local configuration
is determined. The lead atoms occupy the corners of a hexahedron of tetragonal
symmetry. The titanium atom occupies a position near the center of the hexahedron.
The planar oxygens occupy positions in the four elongated faces of the hexahedron,
although they are displaced along the ¢ direction from the centers of those faces. The
axial oxygens occupy positions near the centers of the square faces of the hexahedron,
although they are displaced along ¢ out of the those faces. There are seven bond
lengths that I must calculate using the math expressions of FEFFIT. The oxygen
coordination shell is thus split into three distances: 1) a short axial path, 2) a long
axial path, and 3) four planar paths. The lead and titanium coordination shells are
split into two distances each. There are a variety of collinear and nearly collinear MS
paths overlapping the titanium coordination shell.
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title PbTi03 25C

title Glazer and Mabud, Acta Cryst. B34, 1065-1070 (1978)
Space P4 mm

a=3.905 c=4.156

rmax=5 core=ti

atom
I At.type X y pA tag
Pb 0.0 0.0 0.0
Ti 0.5 0.5 0.539
0 0.5 0.5 0.1138 axial
0 0.0 0.5 0.6169 planar

Figure A.1: The atoms.inp file for PbTiOj;.

In the formalism used by FEFF and FEFFIT, the effective path length for a path is
half of the total distance traveled by the photoelectron. For SS paths, the effective
path length is simply the distance between the scatterer and the central atom. For
MS paths, effective path length is half of the sum of the lengths of the legs of the
path. I therefore use the five crystal parameters to compute the seven relevant bond
lengths in the problem. From these I compute all SS and MS path lengths.

Fig. A.2 shows assignment of the crystallographic parameters from Table 4.4 for
PbTiOj3 at room temperature. In FEFFIT, parameters which are varied to optimize the
fit are specified with the guess keyword. The set keyword is used to assign constant
or calculated values for use elsewhere in the input file. In each fitting iteration, FEFFIT
will first assign current values to the guess parameters. It then evaluates all the set
parameters, some of which may depend on current values of guess parameters. Then
the path parameters will be evaluated given the current values of both the guess and
set parameters. Finally the EXAFS equation is evaluated given the current values
of the path parameters and the paths are summed for comparison to the data and
determination of 2.

Fig. A.3 shows the calculation of the bond lengths from the crystallographic pa-
rameters. If the math expressions in Fig. A.3 are evaluated using the initial values of
the fitting parameters from Fig. A.2, then the bond lengths from Table 4.3 are ob-
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%h% axis lengths

set a0 3.902

guess delta_a 0.0

set a a0 + delta_a
set c0 4.156

% guess delta_c 0.0

% set ¢ c0 + delta_c
set vol a0*a0x*c0

set c vol / (a~2)
% set delta_c c-c0

%%% displacement parameters

guess  dti 0.0390
guess  dol 0.1138
set do2 0.1169
%h% nominal buckling angle

set angle0 9.41475

Figure A.2: Part of the FEFFIT input file for PbTiO3. This piece contains the crystal-
lographic information at room temperature. The length of the c—axis is determined
by holding the volume fixed and varying d,, as discussed in Sec. 4.2. The buckling
angle is not an independent parameter. It is determined from the values of the other
parameters. This is shown in Fig. A.7. Note that, by setting each of dti, do1, and
do2 to zero and delta_a to 0.083 such that a = ¢ = 3.985, the cubic local structure
can be obtained. Thus this fitting model has the freedom to follow the local structure

of a displacive phase transition.

%%% length of a axis

%%% length of c axis
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%%% short and long axial oxygen bond lengths

set rtiol_sh (0.5 - (dol-dti)) * c

set rtiol_lo (0.5 + (dol-dti)) * c

%%% planar oxygen bond length

set rtio2 sqrt( (a/2)°2 + ((do2-dti)*c)~2 )
%%% short and long lead bond lengths

set rtipb_sh sqrt( a”2/2 + ¢"2%(0.5 - dti)"2 )
set rtipb_lo sqrt( a”2/2 + ¢”2*%(0.5 + dti)~"2 )
%kt short and long titanium bond lengths

set rtiti_sh a

set rtiti_lo c

Figure A.3: Part of the FEFFIT input file for PbTiO3. This piece contains the cal-
culations of the seven bond lengths from the crystallographic information in Fig.
A.2. Using the initial values of the parameters from Fig. A.2, the bond lengths from
Table 4.3 are obtained.

tained. In a crystal with orthogonal axes, these distances are easily computed as sums
of squares. In Sec. A.2 I discuss constructing FEFFIT input files for the rhombohedral
phase of BaTiOs.

In FEFFIT the path parameter corresponding to the path length in the EXAFS
equation, delr, is a measure of change in path length rather than the absolute path
length. Fortunately FEFFIT provides a convenient shortcut. In FEFFIT, the word
reff is a reserved word that cannot be used as a user—chosen variable name. reff
always means the effective path length written to the feffnnnn.dat file from FEFF.
When the path parameters for a given path are evaluated and the word reff is en-
countered in one of the math expressions, the math expression is evaluated using the
effective path length of the current path as it was read from the feffnnnn.dat file.
If reff is found in a math expression for a subsequent path paragraph, the effective
path length from the feffnnnn.dat file for that subsequent path is used. In my input
files, I computed the change in path length by summing the lengths of the legs of
the scattering path, dividing by two, and subtracting reff. The path paragraphs
for the three oxygen single scattering paths are shown in Figs. A.4. For these paths
delr is simply the bond length minus reff. The descriptions of the lead and tita-
nium single scattering paths are similar to these, substituting the titanium-—lead and
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titanium—-titanium bond lengths into the delr math expressions in the appropriate
path paragraphs.

path 1 feff/feff0001.dat

id 1 short axial 0 SS r_eff=1.7628
delr 1 rtiol_sh - reff

sigma2 1 sigo_1 + sigmm

el 1 elo

path 2 feff/feff0002.dat

id 2 planar 0 SS r_eff=1.9703
delr 2 rtio2 - reff

sigma2 2 sigo_p + sigmm

el 2 elo

path 3 feff/feff0003.dat

id 3 long axial 0 SS r_eff=2.3762
delr 3 rtiol_lo - reff

sigma2 3 sigo_3 + sigmm

el 3 elo

Figure A.4: Part of the FEFFIT input file for PbTiO3. This part shows the oxygen SS
path paragraphs. The path paragraphs for the lead and titanium SS paths are quite
similar. Note that the McMaster correction sigmm described in Sec. B.2.2 is added
to o2 for each path.

The parameters used to define SZ, the Ey’s, and the 0?’s in the fitting model are
shown in Fig. A.5. Some of the content of Fig. A.5 seems redundant, for example
the separate assignment of 02’s for the oxygen paths which are then set to be equal.
Defining FEFFIT variables in this manner allows me to easily extend my fitting model.
In the example of the oxygen 02’s, I was able to test the effect of allowing independent
0%’s in the first shell without substantial editing of the FEFFIT input file?.

Figure A.6 shows an example of a path paragraph describing a multiple scatter-

2

2Tt turned out that the first shell oxygen o2 were the same within their error bars when allowed

to vary independently.
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set amp 0.90

set sigmm 0.00093 %%k McMaster correction

%%% Oxygen parameters

guess  e0o 8.226

guess  sigo_p 0.004 %» MSD for planar O

set sigo_1 sigo_p %» MSD for short Ti

set sigo_3 sigo_p % MSD for long Ti

%% Lead parameters

set eOpb -10.4

set theta_pb_sh 227 % from PRB v.50 #18 p.13168
set sigpb_sh eins(temp, theta_pb_sh)

set theta_pb_lo 204 % from PRB v.50 #18 p.13168
set sigpb_lo eins(temp, theta_pb_lo)

%%% Titanium parameters

set e0ti 7.30

guess  sigti_p 0.007357 %» MSD for planar Ti

set sigti_a sigti_p % MSD for axial Ti

Figure A.5: Part of the FEFFIT input file for PbTiO3. This part shows the remaining
guess and set parameters.
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ing path. This path is a collinear, triple scattering path through the more distant
axial oxygen to the axial titanium atom. This path has the same contribution to the
EXAFS as the path through the shorter axial oxygen since the location of the inter-
vening atom in a collinear path has very little effect on the EXAFS. Unfortunately,
this near degeneracy slips through the degeneracy checker in FEFF’s path finder. This
path has four legs. The first and last leg are the long oxygen bond length. The middle
two legs are the short oxygen bond length. Thus the effective path length is the sum
of the short and long oxygen bond lengths. This is equivalent to the ¢ axis length and
the math expression for delr could have been written ¢ - reff or even delta_c. |
found it convenient, particularly for the nearly collinear paths, to maintain the more
general description of the delr’s in terms of the lengths of the legs.

%%% a triple scattering, colinear path

path 27 feff/feff0023.dat

id 27 ~” => long axial -> axial Ti -> long axial -> 7
delr 27 rtiol_lo + rtiol_sh - reff

sigma2 27 sigti_a + sigmm

e0 27 ( 2%e0o + e0ti ) / 3

Figure A.6: Part of the FEFFIT input file for PbTiO3. This part shows an example
path paragraph for a collinear MS path. I use the id line to describe the path of the
photoelectron. The symbol ~ is used to denote the central atom.

The math expressions for sigma2 and e0 that [ used in Fig. A.6 further reflect the
physics of my fitting model. T assign an Ej, and a o2 for each type of backscatterer.
In the EXAFS equation o2 is the relative mean square deviation of the total path
length. For a collinear multiple scattering path, the variation of the intervening atom
about its site has only a tiny effect on the deviation of the total path length. In this

2 of the titanium atom effects the deviation in path

2

scattering geometry, only the o
length. Consequently, no new ¢* variables need to be introduced when including
these MS paths.

When FEFF computes the phase shifts of the central and backscattering atoms,
it constructs a muffin tin from neutral atoms. Neglecting the possibility of charge
transfer between the atoms in the material may result in inaccuracies in these phase

shifts. This problem should be most serious at lower energies. This mistake in
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the calculation of the phase may be corrected with the correct energy dependence
by introducing a shift in the energy reference of Eq. (2.10) using Eq. (2.11). One
successful [50] method of parameterizing these phase corrections involves assigning
a independent energy reference shift for each type of backscatterer. The phase shift
for a MS path is then the average of the energy reference shifts associated with each
of the backscatterers in the path. This is seen in the e0 path parameter depicted in
Fig. A.6. Again, no new fitting variables are introduced to consider MS paths.

Note that, in this section, I have not shown several parts of the input files that I
used to fit PbTiOs. I have only shown four of the 27 path paragraphs. The remaining
SS path paragraphs are very similar to those shown in Fig. A.4. The collinear MS
path paragraphs are similar to the one shown in Fig. A.6. The non-—collinear path
paragraphs are described in the next section. Also not mentioned in this section
was all of the information that goes into the header of the input file. This includes
information such as Fourier transform and fitting ranges, the name of the data file,
and so on. Entering this information into the FEFFIT input file is straightforward and
examples are given in FEFFIT's documentation [52].

In Figs. A4 and A.6 an additional term, sigmm, is added to the sigma2 path
parameter. This is the so—called McMaster correction which is computed by ATOMS
and discussed in Sec. B.2.2.

One final point about the path paragraphs in the FEFFIT input file. The path
parameter path is used to specify the name of the feffnnnn.dat file to be used for
that scattering path. The value path can include a directory path? as well as the file
name. In Figs. A.4 and A.6, feff/ is the directory path to the files feff00nn.dat.
Using the directory structure of your operating system is a real boon for organizing
the many output files of FEFF and FEFFIT.

A.1.2  Evaluating the Effect of non—collinearity in PbTiOg

As the displacements of the titanium and planar oxygen atoms vary, the scattering
angle for multiple scattering paths involving those atoms change. The embedded

3 That was the fourth distinct meaning of the word path in two sentences. A scattering path refers
to the trajectory of a photoelectron. A path parameter is a conceptual construct used in FEFFIT.
All available path parameters are given in Table A.1. path is the path parameter that specifies
the computer file containing the a calculation by FEFF of the effective scattering amplitude and
phase shift of a scattering path. A directory path is a conceptual construct of Unix filesystems

indicating the structure of directories and subdirectories specifying the location of a file on a hard
disk.
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atomic backscattering amplitudes and phase shifts depend strongly on angle. T have
to consider this in my fits along with variations in delr, sigma2, and e0. Changes in
the delr’s are parameterized as half the sum of the lengths of the legs and the e0’s
is parameterized as described in the preceding section. Since the planar paths are
not exactly collinear assigning 0’s in the same manner as for the collinear path is a
worse approximation, but not much worse. The additional transverse contribution to
02 due to the non-collinear angle will be small compared the total o2.

To approximate the effect of the changing scattering angle, I used an interpolation
scheme. I computed the contribution due to each planar multiple scattering path at
each of three angles: 1) the angle determined from the structural parameters in Fig.
4.4, 2) % of this angle, and 3) zero degrees. As the structural parameters varied in the
fit, the current angle was determined as shown in Fig. A.7 and a weighting parameter,
x, is determined for interpolation between the initial angle and the zero angle. The
effect of angle must be of even parity, so an interpolation parameter of even parity
is used. Fig. A.7 shows weighting coefficients for both two point and three point
interpolation. Fig. A.8 shows the three path paragraphs used to model the effect of
the angle.

The parameterizations of delr, sigma2, and e0 are shown in Fig. A.8. The weight-
ing coefficients enter as modifies of the S? term in the s02 path parameters. Each
of the three calculations at the three angles enters into the fit with the appropriate
weighting coefficient for a two or three point weighting coefficient. I could use a two
or three point interpolation by uncommenting the appropriate set of coefficients as
shown in Fig. A.7. There was negligible difference in fit quality for the the two and
three point interpolations.

There is a serious pitfall in this technique. It is critical to treat correctly both
the effective phase shift and the delr of each path. When I calculated the paths for
the % and 0 angles, I took care to preserve the lengths of each leg and of the entire
path such that reff is the same for each of these paths but the qﬁ?ﬁ(k) term from
Eq. (2.10) is different. Thus the interpolation is used to determine the bestfit qﬁ;ﬁ(k)
and delr is computed from the structural fitting parameters.

In FEFF, scattering geometries are described in a file called paths.dat. Normally,
this file is written by FEFF’s path finder and is used unedited. Special geometries,
though, can be specified by editing this file. Fig. A.9 shows the paths.dat file that
I used to generate the feff data files used in Fig. A.8. The first path, which has
path index 15, is one of the nearly collinear paths found by FEFF’s path finder. The
scattering angle in this case is 9.41°. The coordinates in paths 115 and 215 were
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%ht% buckling angle & weighting coefficients by Lagrange’s formula
%%% see Num. Rec. in Fort. 1992 ed, sec. 3.1, p. 102

set angle acos( a/(2*rtio2) ) * (180/pi) % in degrees
set X angle”2 / angle0~2

hhtk two point interpolation (neglect path at 2/3 angle)

set w_full X

set w_twoth 0

set W_Zero 1-x

%%% three point interpolation (include path at 2/3 angle)
% set  w_full 3%x"2 - 2%x

% set  w_twoth (-9/2) * x * (x-1)

% set  w_zero 1.5 * (x-1) * (x-2/3)

Figure A.7: Part of the FEFFIT input file for PbTiO3. This part shows the com-
putation of the buckling angle and the weighting parameters for the interpolation
scheme of Fig. A.8 used to determine the effect of the changing angle on the signal.
Note that these are all set values are computed from other variables in the fit, thus
consideration of this angle uses no additional portion of the information content.
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path 18 feff/feff0015.dat

id 18 ” => planar 0 -> planar Ti -> planar 0 -> ~
delr 18 2xrtio2 - reff
sigma2 18 sigti_p + sigmm

e0 18 ( 2%e0o0 + eOti ) / 3
s02 18 w_full * amp

path 19 feff/feff0115.dat

id 19 2/3 angle

delr 19 2xrtio2 - reff
sigma2 19 sigti_p + sigmm

e0 19 ( 2%e0o0 + eOti ) / 3
s02 19 w_twoth * amp

path 20 feff/feff0215.dat

id 20 zero angle

delr 20 2xrtio2 - reff
sigma2 20 sigti_p + sigmm

e0 20 ( 2%e0o0 + e0ti ) / 3
s02 20 W_zero * amp

Figure A.8: Part of the FEFFIT input file for PbTiO3. This part shows example
path paragraphs for a multiple scattering paths involving the planar oxygen atoms.
The effect of the change in bond angle on the data is determined by interpolating
among two or three paths of the same length which differ only by the scattering angle
through the oxygen atom. The interpolation coefficients are multiplied by S3.
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chosen to keep the lengths of the legs constant and to make the angles 6.28° and 0°
respectively. Running the third module of FEFF with this paths.dat file produces
files called feff0015.dat, feff0115.dat, and feff0215.dat which are used in the
path paragraphs shown in Fig. A.8. I chose the path indices 115 and 215 to avoid
conflict with other paths yet to maintain a mnemonic connection to path 15. FEFF
does not require any specific order to the choice of path indices in paths.dat. I have
left the columns containing the leg lengths and Euler angles out of my paths.dat file
as they are not required by FEFF.

The construction of the special feffnnnn.dat files for consideration of the effects
of the buckling angle was a tedious and labor intensive part of preparing to run these
fits. A scheme for automating this chore in a general manner would be an excellent
addition to the battery of software tools developed by the FEFF and UWXAFS projects.

A.2 A Fitting Model for Rhombohedral BaTiO3

In its low—temperature phase, BaTiO3 is rhombohedral, thus consideration of the
delr’s involves a rhombohedral angle o # 90°. The five structural parameters used
in the rhombohedral model are shown in Table 5.5. Again the distinction between the
displacive and order—disorder models was made by considering the local structures
predicted by the two models in my fits. Much of what I did to parameterize my fits
is conceptually identical to the discussion in Sec. A.1. In this section I will discuss
how the delr’s depend upon the rhombohedral angle in the FEFFIT input file.

My analyses of BaTiO3 data were performed on the barium edge, thus all of the
examples in this section show the computation of path lengths with the barium atom
as the central atom. Fig. A.10 shows the ATOMS input file for the rhombohedral
phase of BaTiO3 using the parameters from Table 5.5. From the symmetries of space
group R3M and the five structural parameters, [ know that the barium atoms reside
on the corners of the rhombohedron, the titanium is displaced in a (111) direction
from the center of the rhombohedron, and the oxygen atoms are displaced from the
centers its faces. These deviations from the pure perovskite structure split the oxygen
coordination shell into three distances and the titanium coordination shell into four
distances. In the rhombohedral structure, the barium coordination shell is unsplit.

Fig. A.11 shows how I defined the crystallographic parameters in my FEFFIT input
file. Although I performed my analysis out to the fifth coordination shell, T will only
present the first three here. Note that the trigonometric functions in FEFFIT expect

arguments in radians, so I convert from degrees to radians using a math expression.
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PbTi03, Glazer
Rmax 4.8868,
Plane wave chi

and Mabud, Acta Cryst. B34, 1065-1070 (1978)

keep limit

amplitude filter 2

.50%

.000, heap limit

.000

.000000
.000000
.000000
.000000

115 4 4.

X
.000000
.000000
.000000
.000000

215 4 4

X
.000000
.000000
.000000
.000000

.000 1index, nleg, degeneracy, r=
y z ipot label
1.952500 .323750 10
3.905000 .000000 3 ’Ti
1.952500 .323750 10
.000000 .000000 0 °Ti
000 index, nleg, degeneracy, r=
y z ipot label
1.967290 .216370 10
3.934570 .000000 3 ’Ti
1.967290 .216370 10
.000000 .000000 0 ’Ti
.000 1index, nleg, degeneracy, r=
y z ipot label
1.979150 .000000 10
3.958300 .000000 3 ’Ti
1.979150 .000000 10
.000000 .000000 0 ’Ti

3.9583

3.9583

b

bl

Figure A.9: A paths.dat file used by FEFF to generate the feffnnnn.dat data for
PbTiOj3 at the three bond angles used in Fig. A.8. Paths 115 and 215 were constructed
to have the same path length as path 15, but with angles of 6.71° and 0° respectively.
Constructing paths in this manner separates the change in bond lengths from the
effect on ¢;ﬁ(k) due to the change in scattering angle.
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title Barium Titanate from Kwei et al., using 40K data
title J Phys Chem, 97, 2368, 1993
space r 3 m

a 4.0035 alpha 89.843
rmax = 8.2 index = true
core ba
atom

ba 0 0

0
ti 0.4847 0.4847 0.4847
0 0.5088 0.5088 0.0183

Figure A.10: atoms.inp file for BaTiOs.

set a0 4.0035

guess delta_a 0.0

set a a0 + delta_a

set dalpha 0.157

set alpha (90.0-dalpha) * pi / 180 ! in radians
guess  delta_ox 0.0088

set delta_oz 0.0183

set doz delta_oz * a

guess  delta_tix -0.0153

Figure A.11: Part of the FEFFIT input file for BaTiO3. This part shows the structural
parameters in the rhombohedral local structure. Note that pi is a reserved word in
the syntax of FEFFIT and is always equal to m = 3.14159.. ...
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Computing the eight bond lengths for the first three shells in this structure is
messy. [ use the law of cosines repeatedly to determine distances in this non-—
orthogonal metric. Fortunately in a rhombohedral structure, there is only one unique
angle that is used in all of the law of cosines calculations. I will not describe in detail
the contents of Figs. A.12 and A.14. The math is correct and the contents of the
figures are well commented. The bottom line is that, through judicious use of the
math expressions, very complex constraints can be built into the fitting model.

FEFFIT provides a means of “spell-checking” your input file. Inserting the nofit
keyword into the FEFFIT input file, causes FEFFIT to evaluate all of the math ex-
pressions and path parameters using the initial values for all guess parameters, then
stopping without performing the fit. The values of the set expressions and path pa-
rameters are written to the log file. Since the initial values of the guess parameters
are those used in the FEFF calculation, the delr’s all of the paths should be zero if
the math expressions are correct*. A second test is to set all of of the guessed values
of dalpha, delta ox, delta oz, and delta tix in Fig. A.11 to 0 and see that the
cubic structure is reproduced in a run using the nofit keyword. The path paragraphs
shown in Fig. A.13 are for the first shell oxygen SS paths. All of the rest of the SS
path paragraphs look quite similar, using the appropriate values from Figs. A.12 and
A.14 for delr and the appropriate values for path, e0 and sigma2.

About the barium atom, there are no MS paths which overlap the SS paths of
the first three coordination shells. There are, however, significant nearly collinear MS
paths overlapping the fifth coordination shell. These were included in the fit using
the interpolation method described in Sec. A.1.

For the fits to the orthorhombic and tetragonal local structures of BaTiOg, I again
used the methods described in Sec. A.1. The orthorhombic case was slightly more
complicated since the a and b axes were of different lengths. Ref. [4] provides the
pseudo—monoclinic a and ¢ axis lengths and « angle for the orthorhombic structure. 1
used these to determine the axis lengths by means of the appropriate set expressions.

A.3 A Fitting Model for Cubic EuTiO3

Constructing a cubic fitting model in FEFFIT is vastly easier than for a lower symmetry
structure. All of the tricks for parameterizing Ey and o2 for MS paths discussed in

4 Actually roundoff error from various sources made these values in the log file slightly different
from zero, typically in the fifth decimal place. This is well below the uncertainty of the EXAFS
measurement.
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%%% psi is more convenient than alpha for the law of
%kt cosines (loc) expressions below
set psi pi - alpha

%kt for near and far, use law of cosines to find distance
%%% along cell face, then loc again to find distance to
%%l oxygen atom

set nearl a*(0.5-delta_ox)
set nearp sqrt ( 2*near1x*2 - 4xnearl*cos(psi) )
set dr_onear sqrt( nearp**2 + doz**2 - 2#nearp#*dozxcos(psi) )

%%% half the short face diagonal is the distance from the
%kt barium to the projection of this 0 atom on the face.
hht% use loc with that distance, doz, and psi

set midcorr 2*sqrt(csqr/4)*doz*cos(psi)

set dr_omid sqrt( csqr/4 + doz**2 - midcorr )

set far1 a*x(0.5+delta_ox)

set farp sqrt ( 2xfarlx*2 - 4xfarl*cos(psi) )

set dr_ofar sqrt( farp**2 + doz**2 - 2*farpxdoz*cos(psi) )

Figure A.12: Part of the FEFFIT input file for BaTiO3. This part shows the calculation
of the three oxygen bond lengths.
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path 1 ../feff/rhomb/feff0001.dat

id 1 amp=100.000 deg=3.000 nleg=2 r_eff=2.7856
delr 1 dr_onear - reff

sigma2 1 sigo + sigmm

e0 1 eOo

path 2 ../feff/rhomb/feff0002.dat

id 2 amp=100.000 deg=6.000 nleg=2 r_eff=2.8284
delr 2 dr_omid - reff

sigma2 2 sigo + sigmm

e0 2 e0o

path 3 ../feff/rhomb/feff0003.dat

id 3 amp=46.222 deg=3.000 nleg=2 r_eff=2.8859
delr 3 dr_ofar - reff

sigma2 3 sigo + sigmm

e0 3 eOo

Figure A.13: Part of the FEFFIT input file for BaTiO3. This part shows the path
paragraphs for the first shell oxygen SS paths using the bond lengths determined
from the math expressions shown in Fig. A.12.



187

%kl compute the length of the body diagonal
%%% bsqr = long face diagonal squared
%h% csqr = short face diagonal squared
%h% gsqr = short body diagonal squared

set bsqr ax*2 * (2 + 2xcos(alpha))

set csqr ax*2 * (2 - 2%cos(alpha))

set gsqr csqr + axx2

set cosg (bsqr + ax*2 - gsqr) / (2 * a * sqrt(bsqr))
set body sqrt ( bsqr + ax*2 + 2xaxsqrt(bsqr)*cosg )

%h% the nearest and farthest titaniums lie along the
%%% body diagonals

set dr_til body * ( 0.5 + delta_tix )

set dr_ti4 body * ( 0.5 - delta_tix )

%%’ consider the triangle formed by Ba atoms at opposite
%kl corners of a face and the body center. sigma is the
%%% angle Ba-body_center-Ba. For alpha = 90 (a cube) sigma
Dl is 109.47122 deg = 1.91063 rad. wuse law of cosines

set s1 (bsqr/2) - (gsqr/4) - (body*x2/4)
set s2 body*sqrt (gsqr/4)
set sigma acos( s1 / s2)

%hk now use law of cosines to get these two distances

set ti23corr 2 * sqrt(gsqr/4) * bodyxdelta_tix * cos(sigma)
set dr_ti2  sqrt( gsqr/4 + (body*delta_tix)**2 - ti23corr )
set dr_ti3  sqrt( gsqr/4 + (body*delta_tix)#**2 + ti23corr )

%kt finally, an easy one!
set dr_ba a

Figure A.14: Part of the FEFFIT input file for BaTiO3. This part shows the calculation
of the four titanium bond lengths and the (very easy) barium bond length.
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Sec. A.1 can be used. In the cubic perovskite structure there is no need to consider
changing bond angles — all MS paths that contribute significantly to the EXAFS
are collinear. Since the true perovskite structure is cubic any lattice expansion or
contraction will be isotropic. This means that all delr’s in the fitting model can be
parameterized in terms of an isotropic lattice expansion parameter 1. An example
of this for a SS path is shown in Fig. A.15. Parameterizing delr in this manner is
correct for any MS path also.

path 1 feff/feff0001.dat
id 1 1st shell oxygen SS
delr 1 eta * reff

sigma2 1 sigo + sigmm

el 1 elo

Figure A.15: Part of the FEFFIT input file for a cubic fitting model.



Appendix B

ATOMS: HANDLING CRYSTALLINE MATERIALS IN
XAFS THEORY AND EXPERIMENT

The development of a multiple scattering theory of EXAFS greatly expanded the
scope of problems which could be considered by EXAFS. With FEFF5 and later ver-
sions of FEFF, distant coordination shells and multiple scattering contributions could
be considered in fits to EXAFS spectra from arbitrary samples. FEFF provides a
general solution to the multiple scattering problem by taking a list of atomic coordi-
nates as its input information. From this list, it determines [119] all possible single
and multiple scattering geometries within the list of atomic coordinates. While the
use of an atom list makes FEFF a generally useful and powerful tool, it is a practical
limitation to its use. Constructing an appropriate list of atomic coordinates can be
a time consuming and error prone chore. To address this limitation to the utility of
FEFF, [ wrote the program ATOMS.

ATOMS automates the creation of atom lists for crystalline materials and performs
several calculations useful for interpreting EXAFS measurements. In this appendix
I describe the algorithms used by ATOMS and briefly describe the use of the code.
ATOMS is a part of the UWXAFS analysis package [65] and is also distributed with
FEFF. There is documentation [154] for ATOMS that describes all the details of the

program.

B.1 The Crystallographic Algorithm

ATOMS reads its input data from a free format, plain text file. This file is called
atoms.inp. This input file is parsed by the code and the information needed for the
calculation is interpreted from its content. The parsing scheme relies on mnemonic
keywords which have associated values. For example, when the parsing routine en-
counters the word space in a context where it is to be interpreted as a keyword,
the characters following it are interpreted as the symbol describing the space group.
Except for a few special rules discussed in the program documentation, there is no
required order to the keywords in the input file. An example of this loose structure
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is shown in Figure B.1. In this manner all crystallographic information as well as
all other run-time parameters are entered into the program. The loose structure and
English-like syntax of the input file make ATOMS easy to use and understand.

title PbTi03 25C

title Glazer and Mabud, Acta Cryst. B34, 1065-1070 (1978)
core=ti Space P4 mm

a=3.905 nitrogen=1

rmax=3.6 c=4.156

atom
I At.type x y z tag
Pb 0.0 0.0 0.0
Ti 0.5 0.5 0.539
0 0.5 0.5 0.1138 axial
0 0.0 0.5 0.6169 planar

Figure B.1: An example input file for ATOMS. This is for PbTiO3 using the structural
data from Ref. [3].

ATOMS uses the algorithm of Burzlaff and Hountas [155] to derive symmetry
operations from Hermann—Maguin space group symbols. ATOMS understands both
Hermann-Maguin and Schoenflies symbols. The Schoenflies symbols are converted
internally into the corresponding Hermann—Maguin symbol for the standard setting
of the space group for interpretation by the Burzlaff-Hountas algorithm. Use of the
Hermann-Maguin symbols is preferred as that notation system resolves the ambi-
guity of spatial setting for certain low symmetry space groups [156]. For example,
an orthorhombic crystal may have different symmetry elements in the three direc-
tions. The choice of which set of symmetry elements to associate with each of the
Cartesian directions is arbitrary. There may be up to six different choices. The
Hermann-Maguin system resolves this choice unambiguously while the Schoenflies
system assigns the same symbol to each of the settings of a space group.

The Burzlaff-Hountas algorithm interprets the symmetry elements and Bravais
translations from the Herman—-Maguin symbol and constructs symmetry tables. The
unique atomic positions specified in the input file are operated upon by these sym-
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metry tables to generate the entire contents of the unit cell. The unit cell is then
translated in all three directions to entirely enclose a sphere of the radius specified by
the rmax keyword in the input file. The positions within the unit cells are translated
into Cartesian coordinates using the values of the a, b, and ¢ keywords. For a non-
orthogonal unit cell, one or more of the cell angles alpha, beta, and gamma would
also need to be specified. One of the atoms of the type specified by the core keyword
is selected as the origin and a list ordered by radial distance of atom coordinates is
generated. The output of ATOMS is written to a file called feff.inp which is shown
in Fig. B.2. This file contains the atom list along with reasonable guesses for the rest
of the information required by FEFF. The first three columns of the atom list are the
Cartesian coordinates of the atoms. The absorbing atom is placed at (0,0,0). The
fourth column is the potential index which identifies the species of the atom at that
location. The fifth and sixth column are not used by FEFF, but are included for the
benefit of the user. The fifth column is a tag which identifies the atom as coming
from a particular crystallographic site. The two oxygen atoms in the atoms.inp file
shown in Fig B.1 are distinguished by the tags planar and axial, which, in this case
refer to the placement of the oxygen atoms relative to the ¢ axis and to the nearby
titanium atom. The sixth column is the distance of that atom from the absorbing

atom.

FEFF requires that each atom in the cluster be assigned a unique potential index.
FEFF then computes the free atom potential and charge density for the atomic species
of each unique potential. These free atoms are then overlapped to form the muffin
tin potential used [28] by FEFF to compute the scattering amplitudes and phase
shifts which enter into Eq. (2.10). ATOMS makes the simplest possible choice of
potential index assignments. As shown in Fig. B.2, a potential index is assigned to
the central atom and to each atomic species in the cluster. In some situations it
may be advantageous to allow atoms of the same species to be handled differently
by FEFF. It is my opinion that it should be up to the FEFF user to choose to run
FEFF with potential assignments more complicated than the simple choice made by
ATOMS.

There are several other points of interest in Fig. B.2. The comment lines indicated
in the ATOMS input file by the keyword title are written to the output file. This
allows for user chosen documentation to be passed from atoms.inp through to the
output of FEFF. The radial extent of the cluster is chosen by the rmax keyword in
atoms.inp. The HOLE keyword in feff.inp is used to specify which absorption edge
will be calculated by FEFF. Atoms assumes that, if the absorbing atom is below
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Figure B.2: An example input file for FEFF as generated by AToMS. This is the
output of ATOMS using the file shown in Fig. B.1. The radial extent of this cluster
is truncated to include only the first two coordination shells so that it will fit on the
facing page. ATOMS is typically compiled to allow clusters of up to 800 atoms.



* This feff.inp file generated by ATOMS, version 2.46b

*

ATOMS written by Bruce Ravel and copyright of The Univ. of Washington, 1994

* —— ok —— ok —= ok —= k —= k —= Kk —— % —— k% —— k% —= k% —= k —= k —— X -— %
* total mu = 5194.4 cm™-1, delta mu = 761.6 cm™-1
* specific gravity = 7.942, cluster contains 15 atoms.
® —— ok —— ok —= k —= k —= k —= Kk —— % —— k% —— k% —= k% —= k —= k —— X —-— %
* mcmaster corrections: 0.00093 ang”2 and 0.165E-05 ang~4
* self-abs. corrections: amplitude factor = 1.087
* 0.00004 ang~2 and 0.461E-07 ang~4
* i0 corrections: 0.00119 ang~2 and 0.121E-05 ang~4
¥ —— ok —— k —= k —= k —= k —— Kk —— % —— % —— % —— % —— k —— k —— ¥ -— %
* sum of corrections: 0.00216 ang~2 and 0.291E-05 ang~4
* —— ok —— ok —= k —= k —= k —= Kk —— Kk —— k% —— k% —= k% —= k —= k —— X -— %
TITLE PbTi03 25C
TITLE Glazer and Mabud, Acta Cryst. B34, 1065-1070 (1978)
HOLE 1 1.0 Ti K edge ( 4.965 keV), second number is S0°2
* mphase,mpath,mfeff,mchi
CONTROL 1 1 1 1
PRINT 1 0 0 3
RMAX 3.556564
*CRITERIA curved plane
*DEBYE temp debye-temp
*NLEG 8
POTENTIALS
* ipot z label
0 22 Ti
1 8 0
2 82 Pb
ATOMS
0.00000 0.00000 0.00000 0 Ti 0.00000
0.00000 0.00000 -1.76713 1 axial 1.76713
1.95250 0.00000 0.32375 1 planar 1.97916
0.00000 -1.95250 0.32375 1 planar 1.97916
-1.95250 0.00000 0.32375 1 planar 1.97916
0.00000 1.95250 0.32375 1  planar 1.97916
0.00000 0.00000 2.38887 1 axial 2.38887
-1.95250 -1.95250 1.91592 2 Pb 3.36084
1.95250 -1.95250 1.91592 2 Pb 3.36084
-1.95250 1.95250 1.91592 2 Pb 3.36084
1.95250 1.95250 1.91592 2 Pb 3.36084
1.95250 -1.95250 -2.24008 2 Pb 3.55663
-1.95250 1.95250 -2.24008 2 Pb 3.556563
-1.95250 -1.95250 -2.24008 2 Pb 3.55663
1.95250 1.95250 -2.24008 2 Pb 3.556563

END
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cerium on the periodic table, a K edge calculation is desired. For heavier elements,
ATOMS assumes the L;;; edge. This can be specified in atoms.inp by the edge
keyword. The second argument to HOLE in feff.inp is the value of S? to be used
in the calculation. ATOMS sets this to 1 on the assumption that the effect of S3 will
be included during the analysis of the data. For the convenience of the user, the
energy of the chosen absorption edge is written as a comment on the line containing
the HOLE keyword. Finally, the nitrogen keyword is one of three keywords used to
specify the contents of the I, chamber as causes ATOMS to make the fluorescence
corrections described in Secs. B.2.3 and B.2.4.

At the top of the feff.inp file are several lines which are commented out by the
asterisk character (*). These are the various experimental corrections calculated by
ATOMS and are the topic of the next section.

B.2 Calculations Using the McMaster Tables

B.2.1 The Density and Absorption Lengths

As discussed in Sec. 3.2.1 proper sample preparation for a transmission experiment is
essential for collection of high quality data. In order to make appropriate choices for
the composition and form of the sample it is necessary to know both the absorption
length of the sample and its edge step absorption length. ATOMS approximates these
quantities and reports them in the first of the commented lines at the top of the
feff.inp file.

The absorption length is defined as the thickness x of the sample such that the
intensity of the x-rays incident upon the sample at an energy 50 eV above the absorp-
tion edge is attenuated e-fold. That is, e™* = 1 where p is the total absorption of
the sample at that energy. The edge step absorption length, the reciprocal of which
is called delta mu in feff.inp is the thickness x such that there is an e-fold change
in absorption between 50 eV below and above the edge. That is, e™%%* = 1, where
0y is the change is absorption of the absorbing atom.

ATOMS has a table of coefficients [70] for computing x-ray cross-sections of free
atoms compiled into it. It computes the free atom cross-sections for each atom spec-
ified in atoms.inp at 50eV above the absorption edge and for the resonant atom at
50 eV below the edge. Using the crystallographic information, it knows the size of the
unit cell and how many of each species are in the unit cell. With this information the
absorption length and edge step absorption length are computed. From the unit cell
size and tabulated masses of the elements, the density of the crystal is also computed.
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With the absorption lengths and density of the material, proper choices for sample

preparation can be made.

1
5269.6
cm ~ 13 pym. For my experiment on the titanium

In the example given in Fig. B.2, the absorption length is cm =~ 2 um and the

edge step absorption length is ﬁ
K edge of PbTiOg, I chose to make a sample which was 5 um thick, thus with total
absorption of ~ 2.5 and an edge step of ~ 0.4. Knowing the appropriate thickness
for the sample, the dimensions of the die used to press the sample, and the density
of PbTiO3, I was able to make an appropriate sample using the method described in
Sec. 3.2.1. An example spectrum obtained with one of these samples is shown in Fig.

B.3.

0.8

Absorption

_0 . 8 1 1
4800 5000 5200 5400

Energy (eV)

Figure B.3: Unnormalized absorption spectrum for the titanium K edge of PbTiO;
at 300 K. The edge step for this scan is 0.413, which is very close to the predicted
edge step for a 5 um sample.

B.2.2 The McMaster Correction

To avoid introducing systematic errors into the amplitude of the measured y, an edge-
step normalization is typically used, as discussed in Sec. 2.2. Since the true atomic
background absorption, i, has energy dependence, normalization by the edge-step
introduces an energy-dependent attenuation to the amplitude of x. This attenuation
is small for heavy elements, but can be of the same order as thermal effects for
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light elements. ATOMS calculates an approximation to this attenuation called the
McMaster correction [28].

Using the tables of free atoms x-ray cross-sections, ATOMS evaluates the cross-
section for the free central atom in a range from 50 to 500 eV above the absorption
edge. It then regresses a third order polynomial in the natural log of the energy
relative to the edge to the natural log of the free atom cross-section. A regression in
natural logs is how the coefficients of Ref. [70] were determined. The linear and square
terms are approximations to the degree of attenuation introduced by the edge-step
normalization. These terms are written to the top of feff.inp as second and fourth
cumulants. These are intended as additive corrections to the measured 0% and fourth
cumulants of a fit. Neglecting this correction will make the temperature dependence
of 02 deviate from an Einstein behavior by a constant offset.

B.2.3 The Iy Correction

In a fluorescence experiment, as described in Sec. 3.1.4, the absorption cross section
is obtained from the detected intensities on the Iy and Ir chambers (see Fig. 3.1) by
measuring their ratio as a function of energy. This introduces an energy dependent
error, usually an attenuation, into the amplitude of the measured y. The secondary
photon measured in the fluorescence experiment is always of the same energy. Thus
there is no energy dependent part of the signal measured on Ir. There is, though,
an energy response to Iy that is neglected when Iy is normalized by the signal on ;.
ATOMS calculates an approximation to this attenuation called the Iy correction.

To enable this calculation when using ATOMS, it is necessary to specify the con-
tents of the Iy chamber. In Fig. B.1 this is done with the nitrogen keyword. ATOMS
also recognizes the keywords argon and krypton. From the supplied values of these
three keywords, ATOMS approximates the energy response of the I, chamber using
the tables of free-atom x-ray cross sections. In the case shown in Fig. B.1, the I
chamber was entirely filled with nitrogen.

ATOMS evaluates the cross-section for the gases in the I, chamber in a range from
50 to 500 eV above the absorption edge. It then regresses a third order polynomial in
the natural log of the energy relative to the edge to the natural log of the gas cross-
section. The linear and square terms are approximations to the degree of attenuation
introduced by normalizing Ir by I. These terms are written to the top of feff.inp
as second and fourth cumulants. These are intended as additive corrections to the
measured o2 and fourth cumulants of a fit. Neglecting this correction will make the
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temperature dependence of o2 deviate from an Einstein behavior by a constant offset.

B.2./ The Self-Absorption Correction

The second correction required for fluorescence measurements is called the self-
absorption correction. This calculation is also enabled when any of the nitrogen,
argon, or krypton keywords are specified in atoms.inp. This form for the signal on
the fluorescence detector is given in Eq. (3.7)

~

Iy~ W(Ep)+ m(E) + p(E)

(B.1)

As in Sec. 3.1.4, p.(E) is the absorption of the resonant atom, u,(E) is the rest
of the absorption in the material, and u'(Er) is the absorption of the material at
the fluorescence energy of the resonant atom. The self-absorption correction is due
to the pu.(E) term in the denominator of this equation. In the limit that p.(E) >
(/L'(EF)—HLb(E )), the self-absorption correction is enormous, canceling the oscillatory
structure of the XAFS spectrum. ATOMS approximates the effect of p.(E) term in
the denominator of Eq. (B.1) given two assumptions, 1) the sample is very thick
compared to the absorption length and 2) the entry angle a in Fig. 3.1 is equal to
the exit angle to the fluorescence detector. This derivation could be generalized to
consider a thin sample and unequal entry and exit angles.

Typically, the fluorescence experiment is performed to measure y rather than .
The correction presented in this section is a correction to the measured x. The signal
X is the normalized variation in Ir/I,, the oscillatory part of the absorption of the
resonant atom. I will now derive expressions for the variation in Ir/Iy and for the
normalization term using the notation of Eq. (B.1).

The variation in the signal, §(Ir/Iy) is due to the variation in p.(E ), dpu.(E)

() =1 o)

6MC(E) 6MC(E) . MC(E)

T us(B) +1(B)  (up(E) + ol E))

_ 6MC(E) ) MB(E) (B2)

(u5(E) + pe(E))’

In this equation pg(E) = (1/(Er) + u(E)).
The normalization, A, is the difference in Ir/I, below and above the edge. The



198

symbols ‘a and ‘b denote that the quantity is evaluated above or below the absorption
edge.

pe(E)|, (B,

8= ue(B)|, +np(E)  pe(E)|, + na(E)

(B.3)

For a fluorescence measurement where the self-absorption correction is a significant
effect, Mc(E)‘a is a large term in Eq. (B.1), but Mc(E)‘b is assumed to be small. T
need one more bit of notation,

MC(E)‘G = /‘C(E)‘b + Alte. (B.4)
Using the assumption that Mc(E)‘b is small,

pe(B)|, +Ape (B,
we(B)]+ un(E)  15(E)
_ Ay
= ()] + in(B) (B.5)

A —

Finally I write an expression for the normalized variation in Ir /I, using Eqgs. (B.2)
and (B.5). Since this derivation is for a correction to y, I am only concerned with
normalized variation above the absorption edge.

6([F/[0) . 6/1/0(E) 'FLB(E) . Aﬂc

A (1 (E) + pe(E))* ~ 1e(E) + pp(E)

_ OuelB) - pw(E)
Aie(e(B) + n(B)) |,

The ideal measurement would be undistorted and simply expressed as 6 u.(E') /A .
The correction factor C,ey is the factor by which the measured signal must be multi-
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plied to obtain the ideal signal.

Ope(E) - pp(E)  _ Ope(E)

U Ape(pe(B) + ps(B)) — Ap (B1)
o fe(B) + pp(E)
self /LB(E)
o, ke(E)
=1+ 15 (E) (B.8)

ATOMS uses the free atom cross-sections to evaluate Eq. (B.8) in the energy range
from 50 to 500 eV above the absorption edge'. A third order polynomial in the natural
log of the energy relative to the edge is regressed to the natural log of Eq. (B.8). The
coefficients of this regression are the correction terms reported at the top of the
feff.inp file.

The amplitude factor is the exponent of the constant term in the regression.
This is intended as a multiplicative correction to the amplitude of the data. If this
term is neglected in a fit, the measured S7 will be too small by that factor.

The other two corrections are the linear and square terms of the regression and
are expressed in feff.inp as second and fourth order cumulants [51]. These are

2 and fourth cumulants of a fit.

intended as additive corrections to the measured o
Neglecting this correction will make the temperature dependence of o2 deviate from
an Einstein behavior by a constant offset. Note that this correction is very similar to
that of Ref. [157].

The effectiveness of the amplitude correction calculated by ATOMS was recently
demonstrated [158] on indium fluorescence data taken on an indium alloy dilutely
doped with plutonium. From crystallography, the alloy is known to be of the FCC
structure. Using the amplitude correction from ATOMS and a calculated value for S?
[120], fits to the indium edge data yield a coordination of 12.3+ 0.5 for the first shell.

The approximation made before Eq. B.5 that /LC(E)‘ , is small is not necessary.

Eq. B.3 can be used directly. I plan to include this in a future version of ATOMS.

! Care is taken in the code to avoid running into other absorption edges in the material. If there
is another absorption edge within 500 eV the range is truncated appropriately.



Appendix C

THE OPERATION OF THE COMPUTER PROGRAM
XANES

C.1 Running XANES

The algorithms described in Ch. 8 are implemented in a computer program XANES.
XANES requires that the first module! of FEFF7 be run. These partial waves are used
by XANES to calculate the single site t-matrix elements of Eq. (8.10). An example
of a FEFF input file is shown in Fig. C.1. Several features have been added to FEFF
to accommodate the needs of the XANES program. One of these is seen in Fig. C.1.
A numeric argument is added to the FEFF7 keyword xanes to enable the additional
calculation needed for XANES. Several other output files from FEFF are also used.
These are shown in Table C.1.

Table C.1: Output files from FEFF used in XANES. The files marked as new contain
new calculations by FEFF which are required by XANES.

‘ file name new description ‘
phase.bin partial wave phase shifts
xsect.bin embedded atom background function
potph.dat cluster geometry and potential indexing
xrho.bin / embedded atom electron densities of state
xatom.bin / free atom electron configurations

After running FEFF, XANES is run to solve Eq. (8.6). The solution of the FMS G-
matrix is then used to solve for the site and angular momentum projected x functions

! FEFF7 consists of four distinct calculations, called modules, which are usually run sequentially
using a single input/output structure. It is possible to run only parts of FEFF. The first module
constructs the muffin tin potential and calculates the partial wave phase shifts associated with
each muffin tin. The details of the muffin tin construction and phase shift calculations are given
in Refs. [27,119,120]. The details of running FEFF are given in Ref. [159].
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TITLE Molecular SF6

CONTROL

1 0 0 O
PRINT 1 0 0 O

RMAX 12
XANES 12

EXCHANGE 2 0 O

POTENTIALS
* ipot z tag
0 16 S
1 9 F
ATOMS
* X y z ipot
0 0 0 0 S absorber
1.56 0 0 1 6 F backscatters
0 1.56 0 1
0 0 1.56 1
-1.56 0 0 1
0 -1.56 0 1
0 0 -1.56 1

Figure C.1: A sample FEFF input file for SFg for use with a run of XANES.
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Table C.2: Output files from XANES

file name description of contents

xchi.dat 1, fo, and x convolved with the broadened step function as in
Eqgs. (8.24) and (8.25).

xchi.raw 4 and the complex y without broadening.

submat.bin The submatrix of G for the central atom and the final state
angular momentum for use in CORRECT.

xdos_n.dat  The angular momentum projected DOS function p(E) for each
unique potential n.

xdos_n.raw The atomic portion of the angular momentum projected DOS
function po(F) for each unique potential n.

xfermi.dat The approximations for the Fermi energy and charge transfer.

of Egs. (8.21) and (8.30). Using FEFF’s calculations of the central atom background
function from xsect.bin and the embedded atom electron densities from xrho.bin
along with the y functions, XANES solves Eqgs. (8.23) and (8.29). XANES uses a file
called xanes.conf to configure various characteristics of the code at run—time. There
are a large number of configuration options available for XANES which are described
in the program documentation [160]. A few of the most commonly used are shown in
Fig. C.2. To the end of keeping the basis small, the size of the cluster and the angular
momentum basis used for each atom in the cluster is configurable in a XANES run.

The XANES run writes several files containing calculations of the absorption spec-
trum and of the local electron densities of state (DOS). For comparison of the calcu-
lation to experiment, it is useful to adjust various parameters affecting the calculated
p(E). These include the values of the Fermi energy and the line broadening used in
Eqgs. (8.24) — (8.26), the linear polarization direction, the transition channel if the
calculation is on an edge of initial angular momentum [ > 1, a constant shift of the
absolute energy scale, and an over—all amplitude factor. An ancillary program, COR-
RECT, is used to apply these corrections. CORRECT reads xsect.bin, which contains
the embedded atom background computed by FEFF, and submat.bin, the output file
from XANES containing the central atom and [ = lg,, submatrix of G for each [z,
transition channel appropriate to the chosen edge in the calculation. After reading
the these files, CORRECT applies the corrections described above as indicated within
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### xanes.conf
kmax 4.5

rmax 3.0

dryrun false true
Imax 0 2

Imax 1 1

Figure C.2: A sample XANES configuration file for a XANES run on SFg. kmax limits
the energy range of the calculation. rmax limits the size of the radial cluster used in
the FMS calculation. 1max limits the size of the angular momentum basis used in
the FMS calculation. In this case the basis of the fluorine atoms is restricted to s
and p electrons and of the sulfur atom to s, p, and d electrons. When set to true, the
dryrun keyword is used to make XANES read in all of the input files and check to see
that the calculation will proceed smoothly, but stopping before computing the FMS
matrix.

a configuration file, an example of which is shown in Fig. C.3. The output of this
example run on SFg is discussed in detail in Sec. 9.2.

XANES possesses several useful features which I do not discuss in detail in this
thesis. These include

e An option to use a Singular Value Decomposition for the matrix algebra.

e Computation of exact finite order scattering within the cluster up to triple
scattering.

e Computation of the polarization dependence of the XANES spectrum for K
and L; edges.

e Separate computation of the [+ 1 and [ — 1 final states for L;; and L edges.

e An ancillary program for editing the configuration files for XANES and COR-
RECT.

For complete descriptions see the program documentation [160] and read the infor-
mation files which are distributed with the source code for XANES and CORRECT.

C.2 Five Steps to a Successful XANES Run

Here is a short recipe for using XANES and (hopefully) getting a satisfactory result.
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### file names

outfile xchi.cor

subfile submat.bin

xsectfile xsect.bin

### set and guess variables

set e0 15.0

set efermi 6.2

set amplitude 1.0

set width 0.5

set slope 0.0

### other parameters
# 1final both plus minus
# polarization 0 0 O

Figure C.3: A sample CORRECT configuration file for a CORRECT run on the output
of XANES on SFg. The first three keywords are used to specify the names of the input
and output files. efermi and width are used to specify the sizes of those corrections.
The other three are corrections to the overall amplitude of the calculated spectrum
a shift of the absolute energy scale, and the slope of a line that is added to the
calculation after Epeqp;. The polarization keyword may used to specify the linear
polarization direction. The 1final keyword may be used to add or to isolate the
signals from the [ + 1 and [ — 1 final states in a calculation on an edge of initial
angular momentum greater than 0.
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Compile XANES with appropriate parameters. The header file xparam.h is in-
cluded in 26 places in XANES v. 0.37. The dimensions of the problem are set
there. Be sure that the parameter nclusx, which determines the maximum
number of atoms in the cluster, is set large enough for your application. The
parameter 1x determines the maximum of the angular momentum basis. XANES
does not currently work for 1x larger than 3, although it may be prudent to set
it to a smaller number if you want to run XANES on a very large cluster.

Check your environment resources. In a Unix environment, your shell has con-
figurable limitations in its access to system resources. In CSH or TCSH these
limits can be displayed by executing the shell built—in command limit. In
BASH and equivalent shells, the equivalent built-in command is ulimit. Using
TCSH and typing 1imit at the command line on an SGI Indigo IT that T use, I
see something like this:

cputime unlimited
filesize 4194303 kbytes
datasize 524288 kbytes
stacksize 100000 kbytes
coredumpsize 0 kbytes
memoryuse 187444 kbytes
vmemoryuse 524288 kbytes
descriptors 200

The syntax for changing these limits is, for example, 1imit stacksize 100000.
You might run this command from one of your login scripts. If you compile
XANES to allow for large clusters (say of 80 or more atoms), you will need to set
the stacksize to something appropriately large. It will be obvious that your
system resource access is too small for the program if it dies without writing
anything to the screen and dumps a core.

Run FEFF. The FEFF run should be made on a much larger cluster than what
will be used in the XANES run. This will minimize the effect of the cluster
boundary on the potentials of the scatterers used in the XANES calculations.
If you want a XANES calculation on a crystalline material, you might start by
running ATOMS. In recent versions of ATOMS there is a xanes keyword which,
when set to true, writes cards to feff.inp which are useful for a subsequent
XANES run. Please note that you must supply the XANES card in feff.inp
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and it must have a positive numeric argument. You only need to run the first
module of FEFF, that is to run with CONTROL 1 0 O O in feff.inp. All of the
files needed by XANES are written by the first module.

Run XANES. Typically, XANES is run on a smaller cluster than FEFF. Thus the
calculation of the scattering is separated from the calculation of the scattering
potentials. Although all of the defaults for the keywords in the configuration
file are reasonable, you might want to prepare a special configuration file. See
the code documentation [160] for details about the configuration keywords. I
recommend using the LU matrix decomposition option. It is faster that the
SVD and I have yet to encounter a situation where the SVD was needed. I also
recommend thoughtful use of the 1max keyword. For instance, setting 1lmax to 2
or even 1 for light atoms such as oxygen will probably result in a well converged
calculation and can save considerable computation time. Also, don’t set kmax to
too large of a number. Beyond a few inverse Angstroms, a much larger angular
momentum basis is required for convergence. XANES typically has a hard wired
limit of [0, = 3.

Run CORRECT repeatedly. Use CORRECT to change computation parameters
such as the Fermi energy, to apply polarization, and to examine different /g
states for L;; and Lj;r edges. Since CORRECT is so fast and XANES is so slow,
run a generic XANES calculation and play games with CORRECT.

C.3 Using FEFF with XANES

C.3.1 New FEFF Keywords

Along with the two new output files mentioned in Table C.1, several keywords were
added to the list of keywords recognized by FEFF in the feff.inp file. These are

XANES

The features added by me for use with XANES are enabled by adding a numer-
ical argument to this keyword. When this keyword occurs without a numerical
argument, the standard XANES functionality of FEFF is used.

EGRID

This keyword sets the knots for use in constructing a user—defined energy grid.
Placing EGRID 3 10 20 30 within feff.inp tells FEFF to construct an energy
grid with 3 knots placed 10, 20, and 30eV above first point.
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EMESH

This keyword specifies the size of the grid between the knots specified by the
EGRID keyword. Placing EMESH 0.5 1.0 1.5 in feff.inp tells FEFF to calcu-
late in half volt steps between the first energy point and the first knot, in volt
steps between knots 1 and 2, and in volt and a half steps between the the last
two knots. Beyond that FEFF’s normal algorithm is used.

VINTFIX

This undescriptive keyword is used to continue the calculation of the potentials
and phase shifts below the level of FEFF’s interstice. It takes a real number as
its value. Typically FEFF chooses a point a few volts above the interstice as
its first energy point. The value of this keyword is subtracted from the default
starting point.

C.3.2 FEFF Tricks

Some of the more obscure FEFF keywords are possibly quite useful in conjunction

with XANES. Here are a few that I have used

EXCHANGE

ION

Using different models for the exchange and correlation potentials may im-
prove your calculation. As shown in Table 9.1, I find that the Hedin—Lundqvist
and Ground State models are both useful.

Using this card to ionize the central tends to amplify or diminish the final
state DOS for the central atom. Although this is an ad hoc correction to the
FEFF calculation, it can significantly improve the quality of the result.

FOLP and AFOLP

Changing the parameters on the construction of the muffin tin may yield better
results. This, too, is an ad hoc correction.

JUMPRM

I have found that this keyword produces unsatisfactory results even though
early versions of the program documentation [160] suggested that you do so.
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