A Synchrotron Spectroscopy Primer

Being a brief guide to χ -ray absorption and χ -ray fluorescence spectroscopies for girls and boys of all ages.

Bruce Ravel : Biosciences Lunchtime Seminar : 16 January 2006

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

You are free:

- to copy, distribute, display, and perform the work
- to make derivative works
- to make commercial use of the work

Under the following conditions:

- Attribution. You must give the original author credit.
- Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one.
- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the author.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

Making and detecting x-rays for spectroscopy

of course

Source =

Detector =

The sample stage is usually an XY or XYR stage but might also be:

Electrochemistry cell

Cryostat or furnace

High pressure cell

Chemical reaction cell

etc.....

The sample can be almost anything!

When a photon meets an electron

Absorption spectra

FLUORESCENCE GEOMETRY

Analyzing the absorption spectrum

EXAFS Data Processing

- ∼ Fit a spline to approximate the background
- ∼ Isolate wiggles, convert to wavenumber
- Fourier transform to obtain a function related to a radial distribution function

What do we learn from the absorption spectrum?

- Chemical state of the absorber
 - Oxidation state
 - Coordination chemistry
- Details of the coordination environment
 - Species of neighbors
 - Number of neighbors
 - Distances to neighbors
- ✓ No assumption of periodicity or symmetry
- Generally non-destructive experiment with modest sample preparation requirements

Ti figure courtesy of Simon Bare

Fluorescence spectra

FLUORESCENCE GEOMETRY

- Incident photon energy = 10 keV
- All elements with absorption edges below 10keV fluoresce at their characteristic energies
- This spectrum is from a standard purchased from NIST

What do we learn from the fluorescence spectrum?

Spatial distribution of elements
K-B mirrors: about 5 micron resolution
Fresnel zone plate: about 120 nm resolution
Concentrations of elements
Micro -spectroscopy

-diffraction

Learning something from XANES

- Gold deposits in South Africa and elsewhere formed by the reduction of Au(III)Cl to Au(0) by cyanobacteria such as *Plectonema boryanum*.
- → We expose *P. boryanum* to Au(III)Cl and measure XANES spectra over the course of 720 hours.
- We also measure a variety of standards that are likely to exist in the sample.
- We fit a linear combination of standards to the sample and observe the evolution of the gold species.

Learning something from EXAFS

- One component of the fate and transport of contaminants is the metal/bacterial interaction.
- We expose *B*. Subtilis to aqueous uranyl at various pH values and with/without aqueous calcium. Shown are data at pH=6.9 and without added Ca.
- We fit the data with a model that considers hydroxyl, carboxyl, and phosphoryl bonding of U to the bacterial surface. We find that the U is complexed with ~3 phosphoryls and ~1.5 carboxyls.

Fluorescence maps 1: Sr distribution in arctic fish ear bones

Line scan

- Ear bone composition gives clues to life cycle, such as time spent in clear of brackish water
- 5 micron spot size using Kirkpatrick-Baez mirrors at 13BM
- Line and areal scans to measure elemental distribution
- Pick interesting spots and measure spectroscopy

All images courtesy Matt Newville, research by Ken Severin, Tom Trainor, Univ of Alaska, Fairbanks, Randy Brown, US Fish and Wildlife Service

Fluorescence maps 2: Elemental distribution in *P*. *Fluorescens* and lysing by Cr

- Planktonic P. Fluorescens, before and after exposure to potassium dichromate
- 120 nanometer spot size using Fresnel zone plate mirrors at 2ID-D
- Areal scans to measure elemental distribution
- Pick interesting spots and measure spectroscopy

And in this corner...

Dealing with spectroscopy data

ATHENA: XAS DATA PROCESSING

ARTEMIS: EXAFS DATA ANALYSIS

http://cars9.uchicago.edu/~ravel/software

Spectroscopy beamlines at the APS

Applying for beamtime.

Contact information

- ∼Ken, Ed, Shelly, and I all have offices in E-wing of building 203.
- Phone / email: 2-5033 / bravel@anl.gov
- Web: http://cars9.uchicago.edu/~ravel or Google for bruce+exafs

∼At the APS, I am often found at MRCAT, Sector 10 or Building 433, Room B007