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XANES

« X-ray Absorption Near Edge Structure
NEXAFS

* Near-Edge X-ray Absorption Fine Structure

The two acronyms should be interchangeabl e but over
the years NEXAFS has become terminology for “low Z”
elements- C, N, O...
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 XANESIsregion of x-ray absorption spectrum within ~50eV of the absorption edge.

» Suggested that division isthat at which wavelength of excited electron is equal to
distance between absorbing atom and its nearest neighbor. (I (A) » 12/[e(eV)] *
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What |s XANES?

XANES= Pre-edge + Edge + XANES

Normalized Absorption

()I(-ray abslorption spectrum of T1 Kl-edge of IBaZTiO 4_
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Photon Energy (E-E)
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» Traditionally, set energy scale and calibrate energy by taking
maximum of first derivative of edge as“E,’.

Photon Energy, keV

* Then any peaks below this energy are “pre-edge”’ peaks.
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Pre-edge pesk *°[ Cl K-edge XANES

of K,PtCl,
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* Trueenergy zero isthe Fermi energy: there can be no transitions below this energy.

 If “edge” energy correctly defined as E there are, by definition, no “pre-edge”
features!

» Often difficult to distinguish between bound (localized) and unbound (delocalized)
states.
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Hormal@ed &sorpban

Why Are We Interested |n XANES?
Local Coordination Environment
R ! ] BothTi#

Ba,TiO,
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e Ti K-edge XANES shows dramatic dependence on
the local coordination chemistry.
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Why Are We Interested |n XANES?
Oxidation State
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Mn K-edge Energy, eV

« Many edges of many elements show significant edge
snifts (binding energy shifts) with oxidation state.
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XANES Isstrongly sensitiveto the chemistry (formal
oxidation state and geometry) of the absorbing atom.

Transitions

Information Content

Pre-edge |Features caused by Local geometry around absorbing atom.
electronic transitions to Dependence on oxidation state and bonding
empty bound states. characteristics (chemical shift).

Transition probability
controlled by dipolar
selection rules.

Edge Defines ionization Dependence on oxidation state (chemical
threshold to continuum shift), main edge shifts to higher energy with
states. increased oxidation state. (As much as 5 eV

per one unit change).

XANES |Features dominated by Atomic position of neighbors: interatomic

multiple-scattering
resonances of the
photoelectrons ejected at
low kinetic energy. Large
scattering cross section.

distances and bond angles. Multiple
scattering dominates but ab initio

calculations providing accessible insight (e.g.
FEFFS).
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o XANES directly probes the angular momentum of the
unoccupied el ectronic states: these may be bound or unbound,
discrete or broad, atomic or molecular.

e Dipolesdlectionrulesapply*: Dl =+1, Oy =1, Ds=0.
e Primary transition will be:

« s® pfor K (1scoreelectron) and L, (2s core electron
Initial state) edges

e p® dforlL, (2p,) and L, (2p,) edges

e But.....fina state usually not atomic-like and may have
mixing (hybridization) with other orbitals. Thisis often the
Interesting part of the XANES!

* Some transitions are true quadrupolar transitions. These are usually very weak.
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* The EXAFS equation breaks down at low-k, which complicates
XANES interpretation.

 Wedo not have a ssimple equation for XANES.
XANES can be described qualitatively (and nearly quantitatively) in terms of:
coordination chemistry regular, distorted octahedral, tetrahedral...

molecular orbitals p-d hybridization, crystal field theory
band structure the density of available occupied electronic states
multiple scattering multiple bounces of the photoel ectron

* These chemical and physical interpretations are all related:

What electronic states can the photoelectron fill?
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Spectra simpler to measure than EXAFS: features intense, concentrated
In small energy region.

Weak temperature dependence (Debye-Waller), so spectra can be
recorded at reaction temperature (in situ).

Faster to measure than full spectrum: <msec demonstrated.
Sensitive to chemical information: valence, charge transfer.
Probes unoccupied electronic states: important in chemistry.

Often used as simple “fingerprint” to identify presence of a particular
chemical species.

Beamlines with micro-probe capabilities can also scan energy and obtain
XANES spectrawith elemental distribution.
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Mormalized Absorbance

J\/\ . Sulfur K-edge XANES used to
_J\ff\'“ cci:r::: Identify and quantify the form of
sulfur in heavy petroleum, coals, soils
JJ\,’:_A_@Q etc.
/s <O | 11 eV edge shift from S to S,

OO

>~ | Spectraof Sinsimilar environments
é

O

G

Q0

similar: thiophene, benzothiophene.

Can be used as fingerprint.

2460 2470 2480 2490
Energy (eV)

Reference: George and Gorbaty, J. Am. Chem. Soc. 101 (1979) 3182
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XANES Analysis. Oxidation State
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Dodecyl sulfide, thiophene, tetramethylene sulfoxide, tetramethylene sulfone, sulfate(aq)
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XANES Analysis: Oxidation State

Many, many examplesin the literature......
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Ref: Wong et al., Phys Rev. B 30 (1984) 5596
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Local Site Symmetry in Ti-containing Compounds

Ti K-edge XANES: Reference Compounds

1.5 ; T ‘ T ‘ w T \ T ‘ |
1S ® ! 3d ilj;{,-‘:;‘\'\ TN,
! !,;, ‘,‘\.\ e \‘\
- e Ry Nl e
Barium v:" -
£ 10} Orthotitanate -
3 4 coordinate
-
& Fresnoite -
g .
5 sl 5 coordinate
27/~ Anatase - 6 coordinate |
N E, = 4966.0 eV
OO =g L | | | |
-20 -10 0 10 20 30 40 50

Photon Energy (E-E() eV

Ti_refsl.axg

* Symmetry around absorbing atom strongly affects pre-edge transition:
ability to differentiate 4, 5, 6-fold coordination.
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Correlation between absolute position and peak height of pre-edge
peak: all 4-fold, 5-fold and 6-fold coordinated Ti compounds fall into
separate domains.

Ability to distinguish Ti coordination from pre-edge peak information.
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.. NOFMALIZED ABSORPTEON COEFF ICEENT

XANES of 3d Transition Metals:
Coordination

||II:'.
[N | e For T,symmetry 1sto 3d pre-
TN /f \ edge peak sharp and intense
J i Gt i I _ .
— AV from Ti® Mn, decreases Fe ®
s j* N Cu, absent for Zn.
in .-':.-' Fell ) ] .
f\{% / _ \“”‘”.:H e Decreasein intensity dueto
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B ;JL/M ~— j T « O, symmetry shows only a small
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Y — < A
|/
0.1 _F,IIU . H.J/
L U L Ref: Lytleet al. Phys. Rev. B 37 (1988) 1550.
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» Peak historically called a“white line” as when it was detected by x-
ray film it showed up as awhite line due to the strong absorption.

3.0 I

- || g -
: 0 [ﬁﬁ . 1 L,edge XANES
2 | H _ | for 5d metals
} 1 I 1 | I |
- <20 o Py 40 B0
(D e Eq] /4

e Trangtion from 2p3/2 to 5d states.
» Absence of peak for Au: 5d states almost completely occupied.

 For others Pt<lr<Os<Re, corresponding to increase in number of

unoccupied 5d states on the atoms. Reference: G. Meitzner et al., J. Phys. Chem. 96 (1992) 4960
Page 19
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 Fit to combination of Lorentzianand
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Ref: Lytleet a., Proc. 9th Int. Congr. Catal, Vol 5 (1988) 54
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normalized xu{E)

“White Lin€’ Intensity: Oxides

Re L ;-edge - Transition from 2p3/2 to 5d states.

— e
— read -
— nhéreod

Re metal (Re”) - 5d°
ReO, (Re*) - 5d!
NH,ReO, (Re™) - 5d°

10500 10550 10600

E (eV)

e Intensity of Re L, white line probes Re LDOS
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» Step height linear with concentration from 100-10,000 ppm S - but
relative white line intensity constant only for <2000 ppm.

» Important if using a“reference’ spectrum for fitting or fingerprinting.
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normalized xu{E)

0.5

 Significant differencein L, and L, edge XANES: 2p to 5d transitions.

T T 5d5/2
1 EF
- 5d3/2
2p3/2 —
i L, 22
L,
| <Pt5d3/2filled, so no white
L, shifted to alignwith L, edge. line.
: . 1 ' ' L - - : | !
11550 11600 11650
E (eV)

« Same |=2 final density of states but because of selectionrule, Dj = 1,
different total quantum number probed.

«j=3/2 probed by L ,-edge, j=5/2 probed by L .-edge.
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Platinum L,-edge XANES: PtXGey Intermetallics

14

1, I Increasing %Ge |
content  PtGe,
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Normalized Absorption
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* Trangitionis2p to 5d: Pt d-band full, so “no” intensity at edge.

» PtGeintermetallics: charge transfer from d-band of Pt to Ge, resulting in
significant intensity at edge.

» Useassignature of Pt-Ge intermetallic formation.
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Absorption

10-15A Pt clusters
supported on Al,O,

» White-line intensity decreases
0.05 - 71 and spectra broaden to higher
—— T 1 1 | energiesasH isadded.

» Difference signal typically leads

to broad structure ~8 eV above
absorption edge.

» Severadl different interpretations
in the literature.

Difference

0.00 b1 A I AN AN BN RN BN B B A AN B AN AN AN AN A AN AN B AN AN A A A A

Photon Energy (E-E,), eV
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Which Edge to Choose: Energy Resolution
Mo K-edge XANES of Na,M0O,

| I I I I I I I I I | I I I I | I I I I |
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19.95 20.00 20.05 20.10 20.15

Photon Energy, keV

Mo K-edge at 20.00 keV, effective resolution of 10 eV
dominated by core-hole lifetime.
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e Comparison of normalized Mo L,-edge (2.5 keV) XANES
of Na,M 0O, with that of Mo K-edge (20.0 keV).

Normalized Absorption

0.05 0.10 0.15 0.20 0.25 0.30
Photon Energy, (E-E;) keV

Mo L;-edge at 2.5 keV, 0.5 eV spectral resolution!
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Intensity (arb. units)

Sodium Molybdate, NaMoO,

Mo atom tetrahedral coordination

Mo L ,-edge XANES

ﬁ =t

=

-20

-10 0 10 20 30 40

Photon Energy (eV)

Intensity (arb. units)

nich Edge to Choose: Energy Resolution

Cobalt Molybdate, CoMoO
Mo atom octahedral coordination

Mo L ,-edge XANES

-20 -10 O 10 20 30 40

Photon Energy (eV)

DE tetrahedral = 2.2-2.5 eV: DE octahedral = 3.25-4.2 eV
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Normalized Absorption

Time Evolution of XANES: Kinetics

In situ temper ature programmed
reduction of Re,O-/Al,0O4

100 200 300 py/ 508
/Temoerature. 0
-

o
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Time Evolution of XANES: Kinetics

TPR-XANES showing
reduction of vanadium as

catalyst is heated in H,, to 500°C i f:;/i -
+ H, flow * /

40
F
iZ

Z=Zz2
1=
/ S0
” 46

—

Recorded at X19A, 80 sec/scan
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Quick XANES

« Slew monochromator continuously to obtain a XANES
spectrum in few seconds.

 All modes of detection.

Dispersive XANES

 Polychromatic beam dispersed onto linear detector.
o XANES spectrum in msec.

e Transmission only.

* Need extremely uniform samples.
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» Use special opticsto focus x-ray beam to 10mm diameter (X26A) or <1mm
diameter at APS.

» Combined with x-ray microprobe: elemental composition maps and
oxidation state/local coordination.

o Applications:
— Speciation of metals in soils, sediments and organisms
— Grazing incidence studies of cations and anions on surfaces
— Time-resolved studies of reactions on surfaces and interfaces
— High temperature studies (trace elements in melts)
— Oxidation states of planetary material
— High pressure phases (diamond anvil cell)

 See http://www.bnl.gov/x26&/ for information.
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o XANES useful technique to quantitatively determine
composition of a mixture of species.

« Useful for following time evolution of species during
achemical reaction.

e Two most common methods:
— Least squares linear combination fitting

— Principal component analysis
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L east Squares Linear Combination
Fitting
o Use alinear combination of spectra of various reference
samples.

 Allows quantification of speciesin multiple-component
mixture from their fingerprint in the XANES region.

» Use aleast-sguares algorithm to refine the sum of agiven
number of reference spectrato an experimental spectrum.

« Simple method, easy to iImplement.

 Must have good quality spectra of the reference
compoundsrecorded under similar conditions.
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Normalized Absorption

Linear Combination Fitting
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e Used since 1970’ sin other chemical spectroscopy’. First
published reference in XANES 1992*.

 Traditional approach: choose pure model standard, fit
edges to these standards, but...

e How many standards are needed?
 How do we know models are reasonabl e?

* |f you have wrong group of standards...there is no way
to get the correct answer...

TFactor Analysisin Chemistry, 2nd Ed. John Wiley & Sons, NY, 1991

* Determination of molybdenum surface environment of molybdenum/titania catalysts by EXAFS,
XANES and PCA. Mikrochimica Acta 109 (1992) 281.
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PCA estimates number of distinct speciesin a series of spectra.
Used as afirst stage of analysis.
Based on linear algebra - each spectrum represented as a vector.

Goal isto find number of components that can reproduce the experimental
spectrato within experimental (statistical) error.

NO a priori assumptions on number/type of components.

Growing popularity in XANES spectroscopy*.
*”Principal component analysis approach for modeling sulfur K-XANES spectrain humic acids’, S. Beauchemin et
al., Sail. Sci. Soc.Am.J., 66 (2002) 83.

“Quantitative speciation of Mn-bearing particulates emitted from autos burning mcp-Mn gasolines using XANES
spectroscopy”, T. Ressler et a., Environ. Sci. Technal., 34 (2000) 950.

“EXAFS and principal component analysis. anew shell game’, S. Wasserman et al., J. Synch. Rad., 6 (1999) 284.

“The kinetic significance of V°* in n-butane oxidation catalyzed by vanadium phosphates’, G.W. Coulston et al .,
Science, 275 (1997) 191

“XANES-TPR study of Cu-Pd bimetallic catalysts. application of factor analysis’, M.Fernandez-Garciaet al., J.
Phys. Chem 99 (1995) 12565.
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e Dramatic progress in past decade both in theory and ab
Initio calculations.

 Significant progress has been made in understanding
XANES.

« Quantitative theory central to quantitative interpretation
of XAFS spectrain terms of local geometric and
electronic structure.

o Will hear more about Feff tomorrow!
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Bormalized Aasception

Marmalized Aasoeption

Feff8.1 and XANES: Pt L-edges

Feff reproduces differences in _
whiteline at Pt L, ,-edges Pt L,-edge XANES as function
S — of Pt cluster size
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XANES isamuch larger signal than EXAFS

XANES can be done at lower concentrations, and |ess-than-perfect
sample conditions.

XANES iseaser to crudely interpret than EXAFS

For many systems, the XANES analysis based on linear combinations of
known spectrafrom “model compounds’ is sufficient.

More sophisticated linear-algebra techniques, such as principal
component analysis can be applied to XANES spectra.

XANES s harder to fully interpret than EXAFS

The exact physical and chemical interpretation of all spectral featuresis
still difficult to do accurately, precisely, and reliably.

This situation isimproving.....
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