Basics of EXAFS data analysis

Shelly Kelly

Argonne National Laboratory, Argonne, IL

Investigation of the interactions of U Species at the Bacteria-Geosurface Interface

X-ray-Absorption Fine Structure

X-ray-Absorption Fine Structure

Fourier Transform of $\chi(k)$

- Similar to an atomic radial distribution function
 - Distance
 - Number
 - Туре
 - Structural disorder

Outline

Definition of EXAFS

- Energy to wave number
- Edge Step

• Fourier Transform (FT) of $\chi(k)$

- FT of sine wave is a delta function
- FT of a discrete data set
- Different parts of a FT and backward FT
- FT windows and sills
- Information content

Autobk method for constructing the bkg

- FT and background (bkg) function
- Wavelength of bkg
- Fit the bkg

EXAFS Equation

Definition of EXAFS

Evaluated at the Edge step (E_0)

Energy to wave number

Athena

Athena	_ - ×
File Edit Group Plot Mark Deglitch Align Merge Diff	Preferences Help
Current Group: cugr01 ave	Data groups
File: /home/skelly/Xafs/Cu/CuGR/ian02/cugr01_merge_nor.nor	🖬 cugr_kb 🛛 🔼
	🖬 cugr_welch
Background removal	🖬 cugr_parzen
E0: 8976.236 X R kg: 1	cugr_sine
Standard: None Background: Autobk - Z: H -	cugr_nosill
k-weight: 1 E0 shift: 0 Edge step: 0,9912 (fix step	⊒ cugr_01
Pre-edge range: -150 XI to -30 XI	⊒ cugr_05
Normalization range: 100 🗙 to 923.77 🗙	⊒ cugr_10
Spline range: k: 0.5 🗙 to 16.392 🗙	⊒ cugr_15
E: 0.952 X to 1023.77 X	La cugrui_ave
Spline clamps; low: None - high: Strong - Nclamp; 5	Plot current group in
	E K R q Kq
Forward Fourier transform	Plot marked group in
k-weight: 1 dk: 2 window type: kaiser-bessel 🛁	E K R q
k-range: 2 🗙 to 11.642 🗙	Plotting options
Phase correction: 🖬 off Z: 🕂 🔫 Edge: 🕅 🔫	E k R q Help
	👅 Magnitude 🔹 🔹
Backward Fourier transform	📮 Envelope
dr: 0.5 window type: kaiser-bessel 🛁	🗉 Real part 🛛 💠
R-range: 1 X to 3 X	🚊 Imaginary part 🛭 🕹
Platting parameters	🖬 Phase 🛛 🕹
	Window
plot multiplier: j1 y-axis offset: j0	Rmin: 0 Rmax: 6
Cannot check memory with this version of Ifeffit	

Absorption coefficient

- **Pre-edge region** 300 to 50 eV before the edge
- Edge region the rise in the absorption coefficient
- Normalization region 50 to 1000 eV after the edge

Edge step

- Pre-edge line 200 to 50 eV before the edge
- Normalization line 100 to 1000 eV after the edge
- Edge step the change in the absorption coefficient at the edge
 - Evaluated by taking the difference of the preedge and normalization lines at E₀

<u>Athena</u>

File: /home/skelly/Xafs/Cu/CuGR/jan02/cugr01_merge_nor.nor Background removal E0: 8976.236 Standard: None Background #ut00K k-weight: 1 E0: 0.9912 Pre-edge range: -150 Normalization range: 100 X 16.392 E: 0.952 X 1023.77	 cugr_kb cugr_welch cugr_parzen cugr_sine cugr_nosill cugr_01 cugr_05
Spline clamps: low: None - high: Strong - Nclamp: 5 Forward Fourier transform k-weight: 1 dk: 2 window type: kaiser-bessel - k-range: 2 X to 11.642 X Phase correction: off Z: Edge: Edge: Backward Fourier transform dr: 0.5 window type: kaiser-bessel - Respectively to 2	Cugr_10 Cugr_15 Cugr01_ave Plot current group in E

Fourier Transform

FT of infinite sine wave is a delta function

Fourier Transform

- FT of discrete sine wave is a distorted peak
- Localized features in k-space become unlocalized in R-space

Fourier Transform

 Multiplying the sine wave by a window that gradually increases the amplitude of the sine wave smoothes the FT of discrete sine wave is a distorted peak

Fourier Transform parts

Fourier Transform Windows

NATIONAL

SITY OF

Fourier Transform window sill

<u>Athena</u>

File Edit Group Plot Mark Deglitch Align Merge Diff	Preferences He
Current Group: cugr01_ave File: /home/skelly/Xafs/Cu/CuGR/jan02/cugr01_merge_nor.nor Backgroupd_removal	Data groups
E0: 8976.236 X Rbkg: 1 X Standard: None - Background: Autobk - Z: H -	cugr_sine cugr_nosili cugr_01
Normalization range: 100 X 100 203.77 X Spline range: k: 0.5 X 16.392 X	⊒ cugr_05 ⊒ cugr_10 ⊒ cugr_15 ⊒ <mark>cugr01_ave</mark>
E: 0.952 X to 1023.77 X Spline clamps: low: None - high: Strong - Nclamp: 5	Plot current group in E K R q kq
Forward Fourier transform k-weight: 1 dk: 2 window type: kaiser-bessel	Plot marked group in E k B q Plotting options
Phase correction: I off Z: H - Edge: K -	E k R q Help
R-range: 1 X to 3 X	Envelope Real part
Plotting parameters plot multiplier: 1 y-axis offset: 0	Window Rmin: 0 Rmax: 6

Information content FT k-range = 2-8 Å⁻¹

The amount of information in the data depends on the k-range and the R-range

Information content FT k-range = 2-10 Å⁻¹

The amount of information in the data depends on the k-range and the R-range

Information content FT k-range = 2-12 Å⁻¹

The amount of information in the data depends on the k-range and the R-range

Information content FT k-range = 2-16 Å⁻¹

c(k) = sin(2k) + sin(3k)

Number ofindependent~2DR Dkpointsp

Background function overview

- A good background function removes long wavelength oscillations from c(k).
- Long wavelength oscillations in c(k) will appear as peaks in FT at less than half the R-value for the first peak.

FT and Background function

 An example where long wavelength oscillations appear as (false) peak in the FT

FT and Background function

- An example where background distorts the first shell peak.
- R_{bkg} should be about half the R value for the first peak.

Frequency of Background function

Data contains this and shorter wavelengths

Bkg contains this and longer wavelengths

Constrain background so that it cannot contain wavelengths that are part of the data.

- Use information theory, number of knots = 2 R_{bkg} Δk / π
- 9 knots in bkg using R_{bkg} =1.0 and Δk = 14.0

Background may contain only longer wavelengths. Therefore knots are not constrained.

Fit the background function

11 knots in bkg = 2 $\underline{R}_{\underline{bkg}} \underline{D}k$ using R_{bkg} = 1.8 and Dk = 9.7 **P**

- Knots are not fixed
- shortest wave length constrained by R_{bkg}.
- Not yet implemented in Artemis?

<u>Athena</u>

File Edit Group Plot Mark Deglitch Align Merge Diff	Preferences He
Current Group: cugr01_ave	Data groups
File: /home/skelly/Xafs/Cu/CuGR/jan02/cugr01_merge_nor.nor	🖬 cugr_kb
	📮 cugr_welch
Background removal	🖬 cugr_parzen
E0: 8976.236 X (Rbkg: 1 X)	cugr_sine
Standard: None - Background: Autobk - Z: H -	cugr_nosill
k-weight: 1 E0 shift: 0 Edge step: 0.9912 🖬 fix step	⊒ cugr_01
Pre-edge range: -150 X to -30 X	□ cugr_05
Normalization range: 100 🗙 to 923.77 🗙	g cugr_10
Spline range: k: 0.5 X to 16.392 X	
E: 0.952 🗙 to 1023.77 🗙	Lugion_ave
Spline clamps: low: None - high: Strong - Nclamp: 5	Plot current group in
	E K R Q KQ
Forward Fourier transform	Plot marked group in
k-weight: 1 dk: 2 window type: kaiser-bessel -	E K R q
k-range: 2 X to 11.642 X	Plotting options
Phase correction: 🖬 off Z: 🕂 🔫 Edge: 🕅 🔫	E k R q Help
	📕 Magnitude 🛛 🔶
Backward Fourier transform	🖬 Envelope
dr: 0.5 window type: kaiser-bessel 🥣	🗊 Real part 🛛 🗇
R-range: 1 X to 3 X	🗐 Imaginary part 💊
	🗇 Phase 🛛 🕹
Plotting parameters	ゴ Window
plot multiplier: 1 y-axis offset: 0	Rmin: 0 Rmax: 6

The EXAFS Equation

 $\chi(k) = \Sigma_i \chi_i(k)$

with

 $\chi_{i}(k) = \operatorname{Im}\left(\begin{pmatrix} N_{i} S_{0}^{2} \end{pmatrix} F_{i}(k) \\ k R_{i}^{2} \end{pmatrix} \exp(i(2kR_{i} + \varphi_{i}(k))) \exp(-2\sigma_{i}^{2}k^{2}) \exp(-2R_{i}/\lambda(k)) \right)$

 $R_{i} = R_{0} + \Delta R$ $k^{2} = 2 m_{e}(E-E_{0})/h$

Theoretically calculated values $F_i(k)$ effective scattering amplitude $\phi_i(k)$ effective scattering phase shift $\lambda(k)$ mean free path R_0 initial path length Parameters often determined from a fit to data

- N_i degeneracy of path
- S_0^2 passive electron reduction factor
- σ_i^2 mean squared displacement

 E_0 energy shift

 ΔR change in half-path length

