

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

XAS Data Processing

Shelly Kelly Argonne National Laboratory

Outline

- X-ray absorption signal
- Reference spectra
- Aligning and merging EXAFS signals
- Normalizing EXAFS spectra
- Conversion from energy to wavenumber
- Basics of Fourier transforms
- Background functions
- Fourier transform k-weights
- EXAFS Equation

X-ray Absorption Measurement

The number of X-rays transmitted (I_t) through a sample is given the intensity of X-rays impinging on the sample (I_0) decreased exponentially by the thickness of the sample (x) and the absorption coefficient of the sample (μ)

Transmission Signal $\mu \cdot x = \ln \left(\frac{I_0}{I_t} \right)$

Fluorescence Signal

XAS: X-ray Absorption Spectroscopy

- XANES: X-ray Absorption Near Edge Structure
- EXAFS: Extended X-ray Absorption Fine Structure

Reference Spectra

Reference Placed in beam behind sample

$$\mu \cdot x = \ln \left(\frac{I_t}{I_{ref}} \right)$$

Reference placed beside beam¹

$$\mu \cdot x = \ln \left(\frac{I_0}{I_{ref}} \right)$$

- X-ray absorption spectra should be checked for alignment before the spectra are averaged.
- A reference spectra can be collected with each sample spectra for this purpose.
 - Reference place behind transmission ionization chamber
 - Reference placed beside x-ray beam with a pin diode detector (for samples that do not transmit x-rays)
- The reference spectra are then shifted in energy so that their absorption edges are aligned and the shift is applied to the corresponding sample spectrum

¹Cross J. O. and Frenkel A. I. (1998) Use of scattered radiation for absolute energy calibration. *Rev. Sci. Instrum.* **70**, 38-40.

Aligning and Averaging Spectra

Procedure

- Reference spectrum 2 is aligned to reference spectrum 1 using derivative of edge
- Data set 2 and reference 2 are shifted by the amount determined.
- Data sets 1 and 2 are merged.
- It is good practice to align all the spectra to the same reference spectra for a given project.
- Data are often averaged as absorption spectra

Edge Energy

- The U L_{III}-edge absorption energy for U is defined as 17166 eV.
- The measured absorption edge is broad covering many eV.
- The first derivative of the edge for U(VI) is by convention set to 17171 eV and is useful for XANES comparisons.
- For EXAFS analysis E_0 (the edge energy) is used to defined $k = 0 \text{ }^{-1}$ and is used to align the measured spectra to theoretical calculations.

Normalized X-ray Absorption Spectra

- Pre-edge line 200 to 50 eV before the edge
- Normalization line 100 to ~400 eV after the edge
- Edge step the change in the absorption coefficient at the edge
 - Evaluated by taking the difference of the pre-edge and normalization lines at E₀

Normalized X-ray Absorption Spectra

- Normalized X-ray Absorption Spectra is calculated by subtracting the preedge line from the entire spectra and dividing the entire spectra by the absorption edge step
- Athena has an extra feature used to flatten the absorption spectra above the edge, which can be helpful for comparing XANES spectra from different detectors.

Conversion from Energy to Wavenumber

Fourier Transforms

- Fourier transform of an infinite sign wave with a single phase of 2k is a delta function at R = 1 Å.
- Signal that is de-localized in k-space is localized in R-space
- FT is a frequency filter

FT of two phase sine wave

- The Fourier transform of finite data range is a broad peak rather than a delta function
- The real part of the FT is a sum of the components of the FT of each sine wave
- The information content of a FT signal is given by Nyquist theorem

$$N_{IP} = \frac{2}{\pi} \cdot \varDelta k \cdot \varDelta R + 1$$

Information Content in the Fourier Transform

- Increasing the k-range included in the Fourier transform increases the information contained in the Fourier transformed signal
- All signals are included in the FT from k=0 and there content is carried to the FT signal
- The resolution given in these signals is R = 0.3 Å 0.2 Å and 0.15 Å, hence the signal separated by 1 Å can be resolved even with the lowest k-range

Parts of Fourier Transform

- 1: EXAFS spectra and window function
- 2: Real part of FT
- 3: Imaginary part of FT
- 4: Magnitude of FT
- 5: Real, imaginary, magnitude and inverse of magnitude of FT
- 6: EXAFS spectra and back
 Fourier transformed spectra
- The real and imaginary parts of the Fourier transform contain more information than the magnitude of the FT.

Back Fourier Transform

- The Back Fourier transform contains the information within the R-range.
- Used to compare the signal content within an R-range to the original EXAFS signal
- Longer phase signals are Fourier transformed to peaks at lower R values

Fourier Transform Ripple

- Same data in blue is shown in 1 and 2.
- FT window is broad in 1 and sharp in 2
- Magnitude and real part of FT is shown in 3 and 4.
- Sharp window results in a FT ripple
- Back Fourier transformed spectra are shown in 1 and 2 illustrating the abrupt change in the green spectrum

Effect of a large change in Rbkg

- Rbkg: Controls the curvature of the background and is usually set to about half the first nearest neighbor distance.
- Small values for Rbkg (0.5 Å) result in significant signal at low R values, where no neighboring atoms are present.
- Large values for Rbkg (1.5 Å) result in the removal of signal from the first shell signal.

Effect of a small change in Rbkg

- Small changes in Rbkg can be used to determine the minimum k-range to use in the Fourier transform.
- EXAFS signal should not depend on Rbkg.
- Kmin of 3 Å⁻¹ uses the part of the spectra that does not depend on Rbkg.

Choosing Kmax in the Fourier Transform

- Comparison of the Real part of the Fourier transform using incremental values for the maximum k-value (Kmax) can be used to determine Kmax.
- The Real part of the Fourier transform will be smooth and similar for the different kmax values as long as significant noise is not included in the Fourier transform.
- Kmax values of 11 Å⁻¹ and 12 Å⁻¹ include some noise in the FT

Effect of k-weight in the background removal process

- Background is removed by using a k-weight of 1, 2, or 3.
- Resulting EXAFS signal is displayed using a kweight of 1, 2, or 3
- Use the background k-weight that results in an evenly weighted EXAFS signal at low k, independent of the k-weight used to display the spectrum

K-weight used in Fourier Transform

EXAFS signal for U-X neighbor at 4 Angstroms

- EXAFS signal is processed with k-weight of 1, 2, and 3 and then rescaled so that the signal is the same height for the first shell in the Fourier transform.
- The signal from 3 to 4 A increases with k-weight indicating that there is a atom with stronger signal at higher k-values in this shell
- K-dependence of the EXAFS signal can be used to differentiate neighboring atom types and reduce correlations between EXAFS parameters

Theoretically calculated values

- F_i(k) effective scattering amplitude
- $\varphi_i(k)$ effective scattering phase shift
- $\lambda(k)$ mean free path
- Starting values

R₀ initial path length

Parameters often determined

- from a fit to data
- N_i degeneracy of path
- **S**₀² passive electron reduction factor
- σ_i^2 mean squared displacement
- ΔE_0 energy shift
- $\Delta \mathbf{R}$ change in half-path length

